Linear temperature transducer

1979 ◽  
Vol 22 (3) ◽  
pp. 276-278
Author(s):  
V. A. Derii
2017 ◽  
Vol 33 (12) ◽  
pp. 1435-1440 ◽  
Author(s):  
Sunhee YOON ◽  
Hailing PIAO ◽  
Tae-Joon JEON ◽  
Sun Min KIM

Author(s):  
Tianyong Yang ◽  
Bofu Wang ◽  
Jianzhao Wu ◽  
Zhiming Lu ◽  
Quan Zhou

AbstractThe horizontal convection in a square enclosure driven by a linear temperature profile along the bottom boundary is investigated numerically by using a finite difference method. The Prandtl number is fixed at 4.38, and the Rayleigh number Ra ranges from 107 to 1011. The convective flow is steady at a relatively low Rayleigh number, and no thermal plume is observed, whereas it transits to be unsteady when the Rayleigh number increases beyond the critical value. The scaling law for the Nusselt number Nu changes from Rossby’s scaling Nu ∼ Ra1/5 in a steady regime to Nu ∼ Ra1/4 in an unsteady regime, which agrees well with the theoretically predicted results. Accordingly, the Reynolds number Re scaling varies from Re ∼ Ra3/11 to Re ∼ Ra2/5. The investigation on the mean flows shows that the thermal and kinetic boundary layer thickness and the mean temperature in the bulk zone decrease with the increasing Ra. The intensity of fluctuating velocity increases with the increasing Ra.


1998 ◽  
Vol 12 (29n31) ◽  
pp. 3216-3219 ◽  
Author(s):  
M. Ausloos ◽  
S. Dorbolo

A logarithmic behavior is hidden in the linear temperature regime of the electrical resistivity R(T) of some YBCO sample below 2T c where "pairs" break apart, fluctuations occur and "a gap is opening". An anomalous effect also occurs near 200 K in the normal state Hall coefficient. In a simulation of oxygen diffusion in planar 123 YBCO, an anomalous behavior is found in the oxygen-vacancy motion near such a temperature. We claim that the behavior of the specific heat above and near the critical temperature should be reexamined in order to show the influence and implications of fluctuations and dimensionality on the nature of the phase transition and on the true onset temperature.


2007 ◽  
Vol 14 (04) ◽  
pp. 681-685
Author(s):  
W. D. ROOS ◽  
J. K. O. ASANTE

Profiles of surface concentrations as a function of temperature, where the temperature is increased at a constant rate, contain the necessary information to extract segregation parameters. A model using rate equations can be used to simulate these profiles. Even on a high-speed computer, solving these equations can take hours. For ternary and higher component alloys the fit parameters are at least nine and finding the best fit manually can extend the search to days. Theoretical segregation and diffusion models show two temperature regions of interest. In the low-temperature region, representing the kinetics of segregation, the diffusion coefficients of the species dominate the flux of atoms to the surface, and in the high-temperature region the surface concentrations are independent of the diffusion coefficients. In the high-temperature equilibrium region the surface concentrations are determined only by the segregation energies and interaction coefficients. A procedure is presented that can find a good set of segregation parameters within seconds. The sensitivity of selecting the kinetics, as well as the equilibrium temperature regions will be demonstrated. The procedure is used to extract the segregation parameters for a Cu (111) 0.13 at% Sn 0.18 at% Sb system.


Sign in / Sign up

Export Citation Format

Share Document