Cell clones and pattern formation: On the lineage of photoreceptor cells in the compound eye ofDrosophila

1977 ◽  
Vol 181 (3) ◽  
pp. 227-245 ◽  
Author(s):  
J. A. Campos-Ortega ◽  
A. Hofbauer
Author(s):  
Matti Järvilehto ◽  
Riitta Harjula

The photoreceptor cells in the compound eyes of higher diptera are clustered in groups (ommatidia) of eight receptor cells. The cells from six adjacent ommatidia are organized into optical units, neuro-ommatia sharing the same visual field. In those ommatidia the optical axes of the photopigment containing structures (rhabdomeres) are parallel. The rhabdomeres of the photoreceptor cells are separated from each other by an interstitial i.e innerommatidial space (IOS). In the photoreceptor cell body, besides of the normal cell organelles, a cellular matrix is a structurally apparent component. Similar kind of reticular formation is also found in the IOS containing some unidentified filamentary substance, of which composition and functional significance for optical properties of vision is the aim of this report.The prefixed (2% PA + 0.2% GA in 0.1-n phosphate buffer, pH 7.4, for 1h), frozen section blocks of the compound eye of the blowfly (Calliphora erythrocephala) were prepared by immuno-cryo-techniques. The ultrathin cryosections were incubated with antibodies of monoclonal α-tubulin and polyclonal smooth muscle actin. Control labelings of excess of antigen, non-immune serum and non-present antibody were perforated.


1992 ◽  
Vol 101 (1) ◽  
pp. 247-254 ◽  
Author(s):  
J.L. Hicks ◽  
D.S. Williams

The Drosophila ninaC gene encodes for two head-specific proteins of 132 kDa and 174 kDa. Their predicted amino acid sequences indicate that they may have myosin I and kinase properties. We have: (1) determined the cellular and subcellular distributions of the ninaC proteins in the Drosophila retina by electron microscopic immunocytochemistry with an antibody specific for epitopes shared by both proteins; (2) characterized the ultrastructure of the mutant phenotype. The proteins were detected only in the photoreceptor cells, but were detected in all classes of the compound eye photoreceptors. Within the photoreceptors, they were found in the rhabdomeral microvilli and the cytoplasm adjacent to the rhabdomeres. This distribution coincides with that shown previously for actin filaments. Immunolabelling of tissue from the ninaC P221 mutant, which lacks the 174 kDa protein, and two mutants whose rhabdomeres degenerate, suggests that the 132 kDa protein is present primarily in the cytoplasm adjacent to the rhabdomeres, and that the 174 kDa protein is concentrated in the rhabdomeres. Our ultrastructural analysis showed that the axial cytoskeleton of the rhabdomeral microvilli (which contains filamentous actin) was absent in both the null and P221 mutants. In the photoreceptor cell cytoplasm, the number of multivesicular bodies in the null mutant, but not the P221 mutant, was 3-fold greater in comparison with wild-type.(ABSTRACT TRUNCATED AT 250 WORDS)


Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 3045-3055 ◽  
Author(s):  
L. Zheng ◽  
J. Zhang ◽  
R.W. Carthew

Coordinated morphogenesis of ommatidia during Drosophila eye development establishes a mirror-image symmetric pattern across the entire eye bisected by an anteroposterior equator. We have investigated the mechanisms by which this pattern formation occurs and our results suggest that morphogenesis is coordinated by a graded signal transmitted bidirectionally from the presumptive equator to the dorsal and ventral poles. This signal is mediated by frizzled, which encodes a cell surface transmembrane protein. Mosaic analysis indicates that frizzled acts non-autonomously in an equatorial to polar direction. It also indicates that relative levels of frizzled in photoreceptor cells R3 and R4 of each ommatidium affect their positional fate choices such that the cell with greater frizzled activity becomes an R3 cell and the cell with less frizzled activity becomes an R4 cell. Moreover, this bias affects the choice an ommatidium makes as to which direction to rotate. Equator-outwards progression of elav expression and expression of the nemo gene in the morphogenetic furrow are regulated by frizzled, which itself is dynamically expressed about the morphogenetic furrow. We propose that frizzled mediates a bidirectional signal emanating from the equator.


The axons of the primary photoreceptor cells of the compound eye of the fly interweave in a complex but definite pattern before they terminate upon the second-order neurons. Of approximately 650 short retinula axons from behind 120 facets of the eye none terminated at an incorrect lamina cartridge. Six, seven, or eight first-order terminals upon one pair of second-order cells are arranged in a rotational sequence that is related to the positions of the retinula cells within the ommatidia. Errors in location of the terminal among its neighbours occurred only ten times. The asymmetry of the receptor pattern in the dorsal half of the eye has a mirror image in the ventral half. Along the equator of the eye is a plane of symmetry which many axons necessarily cross in maintaining the appropriate connexions of their receptors. Axons which cross this plane of symmetry have somehow found their appropriate second-order cells, although to do so they must have grown through a milieu which is the mirror image of that in their own half of the eye. Each pair of second-order axons proceeding from the lamina forms a small bundle with the axons of the two long retinula cells that have the same visual axis. Between the lamina and the medulla is a chiasma (with the crossing in the horizontal plane) through which bundles from the lamina pass to project in exactly reverse order upon the medulla. No errors of projection have been found at the single neuron level in this chiasma.


1976 ◽  
Vol 179 (4) ◽  
pp. 275-289 ◽  
Author(s):  
Alois Hofbauer ◽  
J. A. Campos-Ortega

2020 ◽  
Vol 10 (11) ◽  
pp. 3949-3958
Author(s):  
James B. Earl ◽  
Lauren A. Vanderlinden ◽  
Thomas L. Jacobsen ◽  
John C. Aldrich ◽  
Laura M. Saba ◽  
...  

The R7 and R8 photoreceptor cells of the Drosophila compound eye mediate color vision. Throughout the majority of the eye, these cells occur in two principal types of ommatidia. Approximately 35% of ommatidia are of the pale type and express Rh3 in R7 cells and Rh5 in R8 cells. The remaining 65% are of the yellow type and express Rh4 in R7 cells and Rh6 in R8 cells. The specification of an R8 cell in a pale or yellow ommatidium depends on the fate of the adjacent R7 cell. However, pale and yellow R7 cells are specified by a stochastic process that requires the genes spineless, tango and klumpfuss. To identify additional genes involved in this process we performed genetic screens using a collection of 480 P{EP} transposon insertion strains. We identified genes in gain of function and loss of function screens that significantly altered the percentage of Rh3 expressing R7 cells (Rh3%) from wild-type. 36 strains resulted in altered Rh3% in the gain of function screen where the P{EP} insertion strains were crossed to a sevEP-GAL4 driver line. 53 strains resulted in altered Rh3% in the heterozygous loss of function screen. 4 strains showed effects that differed between the two screens, suggesting that the effect found in the gain of function screen was either larger than, or potentially masked by, the P{EP} insertion alone. Analyses of homozygotes validated many of the candidates identified. These results suggest that R7 cell fate specification is sensitive to perturbations in mRNA transcription, splicing and localization, growth inhibition, post-translational protein modification, cleavage and secretion, hedgehog signaling, ubiquitin protease activity, GTPase activation, actin and cytoskeletal regulation, and Ser/Thr kinase activity, among other diverse signaling and cell biological processes.


Sign in / Sign up

Export Citation Format

Share Document