High-temperature electrical conductivity and migration polarization in magnesium oxide

1972 ◽  
Vol 15 (8) ◽  
pp. 1221-1222
Author(s):  
L. P. Andreeva
Alloy Digest ◽  
1975 ◽  
Vol 24 (12) ◽  

Abstract Copper Alloy NO. 182 is an age-hardening type of alloy that combines relatively high electrical conductivity with good strength and hardness. It was formerly known as Chromium Copper and its applications include such uses as resistance-welding-machine electrodes, switch contacts and cable connectors. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-305. Producer or source: Copper and copper alloy mills.


2017 ◽  
Vol 46 (18) ◽  
pp. 5872-5879 ◽  
Author(s):  
Mandvi Saxena ◽  
Tanmoy Maiti

Increasing electrical conductivity in oxides, which are inherently insulators, can be a potential route in developing oxide-based thermoelectric power generators with higher energy conversion efficiency.


2014 ◽  
Vol 50 (1) ◽  
pp. 10-14
Author(s):  
K. Lott ◽  
T. Nirk ◽  
E. Gorokhova ◽  
L. Türn ◽  
M. Viljus ◽  
...  

2019 ◽  
Vol 74 (9) ◽  
pp. 739-742
Author(s):  
Elena V. Nikolaeva ◽  
Andrey L. Bovet ◽  
Irina D. Zakiryanova

AbstractThe electrical conductivity of molten ternary alkali carbonate eutectic, coexisting with MgO particles, has been investigated. The conductivity was measured by the AC impedance method. The apparent activation energy ΔEa increased with the MgO content. This fact can be attributed to the effect of the solid phase. The specific conductivity of those systems could not be described using the Maxwell model over the solvation process of the carbonate ions on the particles of the magnesium oxide.


2003 ◽  
Vol 340-342 ◽  
pp. 263-266
Author(s):  
K. Lott ◽  
O. Volobujeva ◽  
T. Nirk ◽  
L. Türn ◽  
A. Öpik ◽  
...  

2021 ◽  
Author(s):  
Jingxiao Li ◽  
Zhiling Fang ◽  
Lin Fu ◽  
Shangchen Fu ◽  
Lihua Shi ◽  
...  

Abstract Lightning strike is one of the natural disasters to the roof components of ancient buildings. To investigate the causes and damage effects of lightning strikes on the roofing glazed tiles of ancient buildings, artificial lightning strike tests were carried out on glazed tiles. Based on the experiment results, a coupled electrical–thermal finite element model of mortar-containing glazed tiles was established and the Joule heat effect of lightning current was further investigated. The results show that when the lightning channel is attached to the surface of the enamel and body with a low electrical conductivity, the lightning current is mainly released in the form of surface flashover, and a minor damage is induced along the flashover path; when the lightning channel is attached to the mortar with a high electrical conductivity, the lightning current is injected into the mortar, resulting in significant tile damage. The spatial distributions of the temperature present clear gradient characteristics. The high-temperature area appears in the mortar while the high–thermal–stress area appears in the body connected to the grounding rail. As the peak of the lightning current increases, both the high-temperature and high–thermal–stress areas of the glazed tiles expand. The combination of the experiments and the numerical analysis results demonstrate that the damage mechanism of lightning Joule heat effect to glazed tiles may include two aspects. One is the internal explosive force generated from the sharp vaporization and expansion of the moisture inside the tiles due to rapid temperature increase, and the other is the thermal stress caused by the uneven temperature distribution.


2016 ◽  
Vol 174 (3) ◽  
pp. 1033-1041 ◽  
Author(s):  
KeShi Hui ◽  
LiDong Dai ◽  
HePing Li ◽  
HaiYing Hu ◽  
JianJun Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document