Host-parasite interface of the flukeCollyriclum faba (Bremser in Schmalz, 1831) as revealed by light and electron microscopy

1982 ◽  
Vol 68 (2) ◽  
pp. 191-199 ◽  
Author(s):  
Harvey D. Blankespoor ◽  
Darwin D. Wittrock ◽  
John Aho ◽  
Gerald W. Esch

2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 425-428
Author(s):  
E. Rakhimova

The development and ultrastructure feature of secondary hyphae of Podosphaera leucotricha were studied using light and electron microscopy. The percentage of development and length of secondary hyphae, differed in compatible and incompatible combinations. In compatible host-parasite combinations, hyphal cells of powdery mildew fungus contained a full complement of fungal organelles. There were differences of hyphal ultrastructure in compatible and incompatible host-parasite combinations, the main one was the appearance of dense material inside the nucleus, in the cytoplasm, and a few mitochondria.



1977 ◽  
Vol 55 (2) ◽  
pp. 198-207 ◽  
Author(s):  
H. C. Hoch

The host–parasite interaction between Physalospora obtusa and the biotrophic contact mycoparasite Calcarisporium parasiticum was studied by light and electron microscopy. After hyphal contact between the two fungi, a contact cell was delimited by a septum in the germ tube apex of C. parasiticum. Subsequently, a portion of the appressed walls of the host–parasite interface was dissolved, creating a large pore through which cytoplasmic exchange occurred. The results of this study explain, in part, how increased nutrient uptake from the host by the parasite is accomplished and dispells the hypothesis that the contact cell increases the permeability of the host plasmalemma to nutrients and required growth factors.



1990 ◽  
Vol 68 (12) ◽  
pp. 2618-2628 ◽  
Author(s):  
Annerose Heller ◽  
Friedrich Grossmann ◽  
Burkhard Frenzel ◽  
Sigrun Hippe

Light and electron microscopy of barley epidermal cells treated with ethirimol or propiconazole and then inoculated with Erysiphe graminis f. sp. hordei showed the complex reaction of this host–parasite system to fungicides. The completely different biochemical modes of action of the two fungicides were reflected in the ultrastructural changes observed. Specific fungicidal effects could be distinguished from degenerative processes associated with senescence of untreated plants. For ethirimol, the first changes to be observed in the nucleus were blebbing of the outer nuclear membrane, invaginations into the nucleoplasm, and loss of the dark-staining material of nuclear pores. Later on, large areas of the cytoplasm were devoid of ribosomes. Moreover, electron-dense material was found in the perinuclear space and in cisternae of the endoplasmic reticulum. Round bodies, containing electron-dense material of unknown origin, appeared in the cytoplasm. Propiconazole, on the other hand, caused severe malformations of haustoria, host cell wall appositions, and wall thickening. The sheaths surrounding the haustoria were significantly enlarged, and vesicular and multivesicular bodies appeared in the extrahaustorial matrix. In later stages, degenerated haustoria were partially encapsulated by the host cell. Large, rectangular, electron-opaque structures, termed Fibrosinkörper, were observed in secondary hyphae. Both fungicides tested caused swelling of secondary hyphae. Key words: Erysiphe graminis f.sp. hordei, ethirimol, propiconazole, host–parasite system, cytology, electron microscopy.



Author(s):  
Odell T. Minick ◽  
Hidejiro Yokoo ◽  
Fawzia Batti

Vacuolated cells in the liver of young rats were studied by light and electron microscopy following the administration of vitamin A (200 units per gram of body weight). Their characteristics were compared with similar cells found in untreated animals.In rats given vitamin A, cells with vacuolated cytoplasm were a prominent feature. These cells were found mostly in a perisinusoidal location, although some appeared to be in between liver cells (Fig. 1). Electron microscopy confirmed their location in Disse's space adjacent to the sinusoid and in recesses between liver cells. Some appeared to be bordering the lumen of the sinusoid, but careful observation usually revealed a tenuous endothelial process separating the vacuolated cell from the vascular space. In appropriate sections, fenestrations in the thin endothelial processes were noted (Fig. 2, arrow).



Author(s):  
James A. Swenberg ◽  
Adalbert Koestner ◽  
R.P. Tewari

Previous investigations of pathogenetic mechanisms in mycotic encephalitis have been restricted to light microscopic and mycologic approaches. In this study, electron microscopy was utilized to determine the mode of vascular penetration and the cellular and subcellular host-parasite interrelationships in brains of mice infected with Oidiodendron kalrai. This newly isolated fungus was selected because of its ability to consistently produce encephalitis with gross and microscopic lesions similar to those observed in naturally occuring mycoses.



Author(s):  
D. Johnson ◽  
P. Moriearty

Since several species of Schistosoma, or blood fluke, parasitize man, these trematodes have been subjected to extensive study. Light microscopy and conventional electron microscopy have yielded much information about the morphology of the various stages; however, scanning electron microscopy has been little utilized for this purpose. As the figures demonstrate, scanning microscopy is particularly helpful in studying at high resolution characteristics of surface structure, which are important in determining host-parasite relationships.



Author(s):  
John H. L. Watson ◽  
John L. Swedo ◽  
M. Vrandecic

The ambient temperature and the nature of the storage fluids may well have significant effects upon the post-implantation behavior of venus autografts. A first step in the investigation of such effects is reported here. Experimental conditions have been set which approximate actual operating room procedures. Saphenous veins from dogs have been used as models in the experiments. After removal from the dogs the veins were kept for two hours under four different experimental conditions, viz at either 4°C or 23°C in either physiological saline or whole canine arterial blood. At the end of the two hours they were prepared for light and electron microscopy. Since no obvious changes or damage could be seen in the veins by light microscopy, even with the advantage of tissue specific stains, it was essential that the control of parameters for successful grafts be set by electron microscopy.



Author(s):  
Joseph M. Harb ◽  
James T. Casper ◽  
Vlcki Piaskowski

The application of tissue culture and the newer methodologies of direct cloning and colony formation of human tumor cells in soft agar hold promise as valuable modalities for a variety of diagnostic studies, which include morphological distinction between tumor types by electron microscopy (EM). We present here two cases in which cells in culture expressed distinct morphological features not apparent in the original biopsy specimen. Evaluation of the original biopsies by light and electron microscopy indicated both neoplasms to be undifferentiated sarcomas. Colonies of cells propagated in soft agar displayed features of rhabdomyoblasts in one case, and cultured cells of the second biopsy expressed features of Ewing's sarcoma.



Sign in / Sign up

Export Citation Format

Share Document