Production of lactic acid from whey using hydrolysed whey protein as nitrogen source

1992 ◽  
Vol 14 (9) ◽  
pp. 851-856 ◽  
Author(s):  
B. Lund ◽  
B. Norddahl ◽  
B. Ahring
2008 ◽  
Vol 1 (2) ◽  
pp. 109-116 ◽  
Author(s):  
Samir G. Sukkar ◽  
Franca Cella ◽  
Stefania Patriarca ◽  
Anna L. Furfaro ◽  
Francesca Abate ◽  
...  

1988 ◽  
Vol 55 (3) ◽  
pp. 443-448 ◽  
Author(s):  
Nataraja Iyer Vaitheeswaran ◽  
Gajanan S. Bhat

SummaryUndenatured whey protein (UWP) content of skim milk acidified with lactic acid or cultured with lactic cultures was estimated by a dye-binding method. The UWP content decreased with increase in acidity and the denaturation was only partly reversible on neutralization to the original acidity. The decrease in UWP was higher in cultured milk than in the milk acidified to the same extent with lactic acid, indicating the effect of lactic cultures in denaturation of whey proteins during fermentation of milk. Among the lactic cultures the denaturation effect of Lactobacillus delbrueckii subsp. bulgaricus was highest, followed by Streptococcus salivarius subsp. thermophilus, Lactococcus lactis subsp. lactis and Lact. lactis biovar diacetylactis. Denaturation of whey proteins by lactic cultures was found to be partly irreversible.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Joel Romial Ngouénam ◽  
Pierre Marie Kaktcham ◽  
Chancel Hector Momo Kenfack ◽  
Edith Marius Foko Kouam ◽  
François Zambou Ngoufack

Lactic acid (LA) is used in food, cosmetic, chemical, and pharmaceutical industries and has recently attracted much attention in the production of biodegradable polymers. The expensive substances including carbon and nitrogen sources involved in its fermentative synthesis and the increasing market demand of LA have prompted scientists to look for inexpensive raw materials from which it can be produced. This research was aimed at determining the optimum conditions of lactic acid (LA) production from pineapple by-products and an inexpensive nitrogen source using Lactiplantibacillus plantarum strain 4O8. After collection and preparation of the carbon source (pineapple by-products) and nitrogen sources (by-products from fish, chicken, and beer brewing industries), they were used for the formulation of 4 different media in terms of nitrogen sources. Then, the proximate compositions of promising nitrogen sources were determined. This was followed by the screening of factors (temperature, carbon source, nitrogen source, MgSO4, MnSO4, FeSO4, KH2PO4, and KHPO4) influencing the production of LA using the definitive plan. Lastly, the optimization process was done using the central composite design. The highest LA productions ( 14.64 ± 0.05   g / l and 13.4 ± 0.02   g / l ) were obtained in production medium supplemented with chicken and fish by-products, respectively, making them the most promising sources of nitrogen. The proximate analysis of these nitrogen sources revealed that their protein contents were 83.00 ± 1.41 % DM and 74.00 ± 1.41 % DM for chicken by-products and fish by-products, respectively. Concerning the screening of factors, temperature, nitrogen source, and carbon source were the factors that showed a major impact on LA production in the production medium containing chicken by-products as nitrogen source. A pineapple by-product concentration of 141.75 g/l, a nitrogen source volume of 108.99 ml/l, and a temperature of 30.89°C were recorded as the optimum conditions for LA production. The optimization led to a 2.73-fold increase in LA production when compared with the production medium without nitrogen source. According to these results, chicken by-products are a promising and an inexpensive nitrogen source that can be an alternative to yeast extract in lactic acid production.


2014 ◽  
Vol 32 (No. 6) ◽  
pp. 526-531 ◽  
Author(s):  
Š. Horáčková ◽  
P. Sedláčková ◽  
M. Sluková ◽  
M. Plocková

The effect of whey powder, whey protein concentrate, caseinomacropeptide, and malt addition into milk on the growth and acid production of lactobacilli (Lactobacillus casei Lafti L-26, Lactobacillus acidophilus CCDM 151, and Lactobacillus casei CCDM 198) was evaluated. The ability of these strains to use different types of saccharides from milk and plant sources was also tested. Glucose, galactose, fructose and maltose were utilised by all tested strains. The results showed that the addition of malt positively affected the growth of lactobacilli strains compared to the growth in milk enriched by whey ingredients. The addition of malt increased significantly the production of d(–)isomer of lactic acid by Lactobacillus acidophilus CCDM 151 and Lactobacillus casei CCDM 198 and the production of acetic acid by Lactobacillus casei CCDM 198.  


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 78
Author(s):  
Alicja Katarzyna Michalczyk ◽  
Sylwia Garbaczewska ◽  
Bolesław Morytz ◽  
Arkadiusz Białek ◽  
Jerzy Zakrzewski

The purpose of this study was to explore the possibility of replacing an expensive yeast extract contained in the fermentation medium for D-lactic acid (D-LA, R-lactic acid) biosynthesis with an alternative nitrogen source. The screening studies were conducted under stationary conditions and showed that pea seed hydrolysate was the most beneficial substrate in the process of D-LA biosynthesis by the strain Sporolactobacillus laevolacticus DSM 442 among the used inorganic and organic nitrogen sources, waste materials, food and agricultural products. After 96 h, 75.5 g/L D-LA was obtained in batch cultures in a medium containing pea seed hydrolysate, with an average productivity of 0.79 g/L/h, yield of 75.5%, and optical purity of 99.4%. In batch cultures fed once, in a medium with an analogous composition, 122.6 g/L D-LA was obtained after 120 h, and the average yield, productivity and optical purity were 87.6%, 1.021 g/L/h, and 99.6%, respectively. Moreover, the amount of D-LA obtained in the fermentation medium enriched with the above-mentioned cheap agricultural product was similar to the amounts obtained in the medium containing yeast extract in both stationary and bioreactor cultures. Our research shows that hydrolyzed pea seeds, which belong to the legume family, may be a promising nitrogen source for the production of D-LA on an industrial scale.


1988 ◽  
Vol 55 (2) ◽  
pp. 247-254 ◽  
Author(s):  
Christophoros Pappas ◽  
Leandros Voutsinas

SummaryWhen 10% citric, lactic or acetic acid was added to sheep's milk cheese whey during its heating for Myzithra cheese preparation, protein retention in the cheese was increased. Acidification of whey to pH 5·2 with lactic acid before heating followed by readjustment to pH 5·8 with NaOH was considered to be the best treatment for practical use, increasing whey protein retention in the cheese and yield without loss of flavour, aroma or texture.


Sign in / Sign up

Export Citation Format

Share Document