Post-Newtonian gravitational radiation of a system of two compact objects in the field theory of gravitation

1982 ◽  
Vol 52 (3) ◽  
pp. 888-893 ◽  
Author(s):  
A. A. Vlasov
2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Zhengwen Liu ◽  
Rafael A. Porto ◽  
Zixin Yang

Abstract Building upon the worldline effective field theory (EFT) formalism for spinning bodies developed for the Post-Newtonian regime, we generalize the EFT approach to Post-Minkowskian (PM) dynamics to include rotational degrees of freedom in a manifestly covariant framework. We introduce a systematic procedure to compute the total change in momentum and spin in the gravitational scattering of compact objects. For the special case of spins aligned with the orbital angular momentum, we show how to construct the radial action for elliptic-like orbits using the Boundary-to-Bound correspondence. As a paradigmatic example, we solve the scattering problem to next-to-leading PM order with linear and bilinear spin effects and arbitrary initial conditions, incorporating for the first time finite-size corrections. We obtain the aligned-spin radial action from the resulting scattering data, and derive the periastron advance and binding energy for circular orbits. We also provide the (square of the) center-of-mass momentum to $$ \mathcal{O}\left({G}^2\right) $$ O G 2 , which may be used to reconstruct a Hamiltonian. Our results are in perfect agreement with the existent literature, while at the same time extend the knowledge of the PM dynamics of compact binaries at quadratic order in spins.


2016 ◽  
Vol 31 (06) ◽  
pp. 1630007 ◽  
Author(s):  
Steven Weinberg

I reminisce about the early development of effective field theories of the strong interactions, comment briefly on some other applications of effective field theories, and then take up the idea that the Standard Model and General Relativity are the leading terms in an effective field theory. Finally, I cite recent calculations that suggest that the effective field theory of gravitation and matter is asymptotically safe.


1980 ◽  
Vol 58 (11) ◽  
pp. 1595-1598 ◽  
Author(s):  
R. B. Mann ◽  
J. W. Moffat

The wave equation for a scalar field ψ is solved in the background metric of a new theory of gravity, based on a non-Riemannian field structure with a nonsymmetric Hermitian gμν. In contrast to the solution of the problem in a Schwarzschild background metric, in which only orbits close to r ~ 3M yield significant gravitational radiation, the new metric leads to an effective potential with stable orbits for a substantial range of r. The solution yields ψ = (1 − ℓ4/r4)−1/2ψGR where ℓ is a new integration constant. The null surface r = ℓ determines an astrophysical object called a "deflectar", which for ℓ > 2M conceals the Schwarzschild black-hole event horizon at r = 2M. As r → ℓ the gravitational synchrotron radiation increases to infinity. The actual power output of gravitational radiation for physically allowed stable orbits closest to r = ℓ is estimated, demonstrating that a deflectar is a potentially strong source of gravitational radiation.


Author(s):  
Maciej Gos

The general theory of relativity and field theory of matter generate an interesting ontology of space-time and, generally, of nature. It is a monistic, anti-atomistic and geometrized ontology — in which the substance is the metric field — to which all physical events are reducible. Such ontology refers to the Cartesian definition of corporeality and to Plato's ontology of nature presented in the Timaeus. This ontology provides a solution to the dispute between Clark and Leibniz on the issue of the ontological independence of space-time from distribution of events. However, mathematical models of space-time in physics do not solve the problem of the difference between time and space dimensions (invariance of equations with regard to the inversion of time arrow). Recent research on space-time singularities and asymmetrical in time quantum theory of gravitation will perhaps allow for the solution of this problem based on the structure of space-time and not merely on thermodynamics.


1995 ◽  
Vol 73 (3-4) ◽  
pp. 187-192 ◽  
Author(s):  
Alexander A. Vlasov

Contrary to the hypothesis that every viable theory of gravitation must be the metric one, this paper presents the example of nonmetric relativistic gravitational theory on the basis of Minkowski space-time, where the gravitation is described by a mixture of the nonlinear scalar field and the linear 4-vector field, compatible with all the known post-Newtonian gravitational tests, with tests on gravitational radiation from binary pulsar PSR 1913 + 16 and with the ordinary cosmological notions.


Sign in / Sign up

Export Citation Format

Share Document