Calpain from rat intestinal epithelial cells: Age-dependent dynamics during cell differentiation

1994 ◽  
Vol 131 (1) ◽  
pp. 49-59 ◽  
Author(s):  
M. Ibrahim ◽  
Raj K. Upreti ◽  
Abdul M. Kidwai
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hui Joyce Li ◽  
Subir K. Ray ◽  
Ning Pan ◽  
Jody Haigh ◽  
Bernd Fritzsch ◽  
...  

AbstractTranscription factor Neurod1 is required for enteroendocrine progenitor differentiation and maturation. Several earlier studies indicated that ectopic expression of Neurod1 converted non- neuronal cells into neurons. However, the functional consequence of ectopic Neurod1 expression has not been examined in the GI tract, and it is not known whether Neurod1 can similarly switch cell fates in the intestine. We generated a mouse line that would enable us to conditionally express Neurod1 in intestinal epithelial cells at different stages of differentiation. Forced expression of Neurod1 throughout intestinal epithelium increased the number of EECs as well as the expression of EE specific transcription factors and hormones. Furthermore, we observed a substantial reduction of Paneth cell marker expression, although the expressions of enterocyte-, tuft- and goblet-cell specific markers are largely not affected. Our earlier study indicated that Neurog3+ progenitor cells give rise to not only EECs but also Goblet and Paneth cells. Here we show that the conditional expression of Neurod1 restricts Neurog3+ progenitors to adopt Paneth cell fate, and promotes more pronounced EE cell differentiation, while such effects are not seen in more differentiated Neurod1+ cells. Together, our data suggest that forced expression of Neurod1 programs intestinal epithelial cells more towards an EE cell fate at the expense of the Paneth cell lineage and the effect ceases as cells mature to EE cells.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1895 ◽  
Author(s):  
Sepideh Fallah ◽  
Jean-François Beaulieu

The human intestine is covered by epithelium, which is continuously replaced by new cells provided by stem cells located at the bottom of the glands. The maintenance of intestinal stem cells is supported by a niche which is composed of several signaling proteins including the Hippo pathway effectors YAP1/TAZ. The role of YAP1/TAZ in cell proliferation and regeneration is well documented but their involvement on the differentiation of intestinal epithelial cells is unclear. In the present study, the role of YAP1/TAZ on the differentiation of intestinal epithelial cells was investigated using the HT29 cell line, the only multipotent intestinal cell line available, with a combination of knockdown approaches. The expression of intestinal differentiation cell markers was tested by qPCR, Western blot, indirect immunofluorescence and electron microscopy analyses. The results show that TAZ is not expressed while the abolition of YAP1 expression led to a sharp increase in goblet and absorptive cell differentiation and reduction of some stem cell markers. Further studies using double knockdown experiments revealed that most of these effects resulting from YAP1 abolition are mediated by CDX2, a key intestinal cell transcription factor. In conclusion, our results indicate that YAP1/TAZ negatively regulate the differentiation of intestinal epithelial cells through the inhibition of CDX2 expression.


2020 ◽  
Vol 20 (2) ◽  
pp. 157-166
Author(s):  
Yuan Yang ◽  
Jin Huang ◽  
Jianzhong Li ◽  
Huansheng Yang ◽  
Yulong Yin

Background: Stearic acid (SA), a saturated long-chain fatty acid consisting of 18 carbon atoms, is widely found in feed ingredients, such as corn, soybeans, and wheat. However, the roles of SA in the renewal of intestinal epithelial cells remain unclear. Methods and Results: In the present study, we found that 0.01-0.1 mM SA promoted IPEC-J2 cell differentiation and did not affect IPEC-J2 cell viability. In addition, the results showed that the viability of IPEC-J2 cells was inhibited by SA in a time- and dose-dependent manner at high concentrations. Flow cytometry and western blot analysis suggested that SA induced apoptosis, autophagy and ER stress in cells. In addition, the amounts of triglyceride were significantly increased upon challenge with SA. Moreover, the decrease in the viability of cells induced by SA could be attenuated by 4-PBA, an inhibitor of ER stress. Conclusion: In summary, SA accelerated IPEC-J2 cell differentiation at 0.01-0.1 mM. Furthermore, SA induced IPEC-J2 cell apoptosis and autophagy by causing ER stress.


1994 ◽  
Vol 267 (4) ◽  
pp. G730-G743 ◽  
Author(s):  
G. Hallden ◽  
E. L. Holehouse ◽  
X. Dong ◽  
G. W. Aponte

Intestinal fatty acid binding protein (I-FABP) is a cytosolic protein present only in differentiated intestinal epithelial cells. Here we report on an intestinal cell culture system expressing I-FABP during cell differentiation and the modulation of expression by extracellular factors. An I-FABP-expressing cell line (hBRIE 380i) was generated from Berkeley rat intestinal epithelial cells (hBRIE 380). Time- and substratum-dependent changes in I-FABP mRNA expression were paralleled by changes in protein levels. Induction of I-FABP levels observed on collagen type I gels in the presence of limiting serum was prevented by insulin. When cells were grown on collagen gels containing fibronectin and laminin, a stimulation of ultrastructural characteristics of cell differentiation was observed with no further induction of I-FABP expression. The data show that I-FABP expression is limited to a differentiated population of hBRIE 380i cells and that the expression can be regulated by factors present in the extracellular matrix as well as involved in regulation of replication or metabolic state of the cell.


2009 ◽  
Vol 296 (1) ◽  
pp. G23-G35 ◽  
Author(s):  
Ryuichi Okamoto ◽  
Kiichiro Tsuchiya ◽  
Yasuhiro Nemoto ◽  
Junko Akiyama ◽  
Tetsuya Nakamura ◽  
...  

Notch signaling regulates cell differentiation and proliferation, contributing to the maintenance of diverse tissues including the intestinal epithelia. However, its role in tissue regeneration is less understood. Here, we show that Notch signaling is activated in a greater number of intestinal epithelial cells in the inflamed mucosa of colitis. Inhibition of Notch activation in vivo using a γ-secretase inhibitor resulted in a severe exacerbation of the colitis attributable to the loss of the regenerative response within the epithelial layer. Activation of Notch supported epithelial regeneration by suppressing goblet cell differentiation, but it also promoted cell proliferation, as shown in in vivo and in vitro studies. By utilizing tetracycline-dependent gene expression and microarray analysis, we identified a novel group of genes that are regulated downstream of Notch1 within intestinal epithelial cells, including PLA2G2A, an antimicrobial peptide secreted by Paneth cells. Finally, we show that these functions of activated Notch1 are present in the mucosa of ulcerative colitis, mediating cell proliferation, goblet cell depletion, and ectopic expression of PLA2G2A, thereby contributing to the regeneration of the damaged epithelia. This study showed the critical involvement of Notch signaling during intestinal tissue regeneration, regulating differentiation, proliferation, and antimicrobial response of the epithelial cells. Thus Notch signaling is a key intracellular molecular pathway for the proper reconstruction of the intestinal epithelia.


Sign in / Sign up

Export Citation Format

Share Document