Nitrogen fixation in bambara groundnut,Voandzeia subterranea (L.) Thouars

1988 ◽  
Vol 4 (3) ◽  
pp. 365-375 ◽  
Author(s):  
Mamadou Gueye ◽  
Lucien M. Bordeleau
1996 ◽  
Vol 48 (1) ◽  
pp. 57-64 ◽  
Author(s):  
B.D. Kishinevsky ◽  
M. Zur ◽  
Y. Friedman ◽  
G. Meromi ◽  
E. Ben-Moshe ◽  
...  

Author(s):  
Mahmudul Hasan ◽  
Md Kamal Uddin ◽  
Mahmud Tengku Muda Mohamed ◽  
Ali Tan Kee Zuan

Bambara groundnut (Vigna subterranea) has characteristics to grow in the marginal soil and also tolerant into the drought condition and also have potential of nitrogen fixation. Nitrogen is the key plant nutrient that stimulates root and shoot growth. Phosphorus application significantly improves many aspects of plant physiology including photosynthesis, flowering, fruiting and maturation which ultimately result in better yield. Symbiotic nitrogen fixation is a complex process, in which Rhizobium bacteria form a beneficial interaction with a legume crop to fix atmospheric nitrogen and convert it to ammonium for plant uptake. Biological N fixation (BNF) is the natural means to enhance soil fertility status and productivity. Application of nitrogen and phosphorus fertilizer exerted significant effect on root development, photosynthesis, yield contributing character and pod yield of the crop. Bambara Groundnut yields are low due to abiotic and biotic stresses. But with application of nitrogen and phosphorus increase the yield of this crop. It’s seeds contain 63 percent carbohydrate, 19 percent protein and 6.5 percent oil and good source of fibre, calcium, iron and potassium.


2018 ◽  
Vol 30 (2) ◽  
pp. 19-28
Author(s):  
A. J. Oludare ◽  
J. I. Kioko ◽  
A. A. Akeem ◽  
A. T. Olumide ◽  
K. R. Justina ◽  
...  

Nine accessions of Bambara groundnut (Vigna subterranea (L.) Verdc.,syn. Voandzeia subterranea (L.) Thouars ex DC.)  obtained from National Centre for Genetic Resources and Biotechnology (NACGRAB), Ibadan, Oyo state, were assessed for their genetic and phylogenetic relatedness through electrophoretic analysis of the seed proteins. 0.2g of the seeds were weighed and macerated with mortar and pestle in 0.2M phosphate buffer containing 0.133M of acid (NaH2PO4) and 0.067 of base (Na2HPO4) at pH 6.5. Protein characterization with standard marker revealed that the seeds of the nine accessions contained proteins (B.S.A, Oval Albumin, Pepsinogen, Trypsinogen and Lysozyme) with molecular weights ranging from 66kda and above, 45 – 65 kDa, 44 – 33 kda, 32-24 kDa and 23-14 kDa, respectively. The student T-test revealed that accessions B, C, E, F, H and I have molecular weights not significantly different from one another (P<0.05) while samples A, D and G showed significantly different values (P>0.05). All the accessions had at least two proteins and two major bands in common. The study revealed intra-specific similarities and genetic diversity in protein contents among the nine accessions of Bambara groundnut (Vigna subterraranea (L.) Verdc.syn


2015 ◽  
Vol 525 ◽  
pp. 41-51 ◽  
Author(s):  
PLM Cook ◽  
V Evrard ◽  
RJ Woodland

Author(s):  
S.F. Ledgard ◽  
G.J. Brier ◽  
R.N. Watson

Clover cultivars grown with ryegrass were compared in an establishment year under dairy cow grazing. There was no difference in total annual productton but summer production was greater with Pawera red clover and with Kopu or Pitau white clovers. Clovers differed little in the proportion of nitrogen fixed, except during summer when values were highest for Pawera. Pawera was less prone to nematode attack than white clover cultivars but was more susceptible to clover rot. Resident clovers and high buried seed levels (e.g., 11-91 kg/ha) made introduction of new clover cultivars difficult. Sown clovers established best (50-70% of total clover plants) when drilled into soil treated with dicamba and glyphosate. Keywords: white clover, red clover, nematodes. nitrogen fixation, pasture renovation


GIS Business ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. 425-431
Author(s):  
Subin Thomas ◽  
Dr. M. Nandhini

Biofertilizers are fertilizers containing microorganisms that promote plant growth by improving the supply of nutrients to the host plant. The supply of nutrients is improved naturally by nitrogen fixation and solubilizing phosphorus. The living microorganisms in biofertilizers help in building organic matter in the soil and restoring the natural nutrient cycle. Biofertilizers can be grouped into Nitrogen-fixing biofertilizers, Phosphorous-solubilizing biofertilizers, Phosphorous-mobilizing biofertilizers, Biofertilizers for micro nutrients and Plant growth promoting rhizobacteria. This study conducted in Kottayam district was intended to identify the awareness and acceptance of biofertilizers among the farmers of the area. Data have been collected from 120 farmers by direct interviews with structured questionnaire.


Sign in / Sign up

Export Citation Format

Share Document