Reconstitution of the complement channel into lipid vesicles and planar bilayers starting from the fluid phase complex

1985 ◽  
Vol 5 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Gianfranco Menestrina ◽  
Flavia Pasquali

Proteolysis of the fluid phase complement complex SC5b-9 transforms it into an arnphiphilic molecule which resembles the membrane attack complex of complement and reconstitutes into lipid vesicles. Complement-containing vesicles prepared in this way can be made to fuse with planar lipid bilayers transferring their protein content to the host membrane. Massive conductance increases can thus be observed, which are due to the insertion of a large number of ionic channels into the membrane. Using low concentrations of vesicles, single channels can be studied.

1979 ◽  
Vol 149 (2) ◽  
pp. 448-458 ◽  
Author(s):  
G Biesecker ◽  
E R Podack ◽  
C A Halverson ◽  
H J Müller-Eberhard

The membrane attack complex (MAC) of complement was extracted from the membranes of cells lysed by human complement and its properties were compared with those of the fluid phase complex SC5b-9. Upon sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunochemical analysis, the two isolated complexes had identical subunit compositions, except that the MAC lacked the S-protein. The sedimentation coefficient and molecular weight of the extracted and isolated MAC were, respectively, 33.5 S and 1.7 x 10(6) daltons, compared to 23 S and 1.0 x 10(6) dalton for SC5b-9. Because the molecular weight of the MAC is approximately two times greater than that of C5b-0 (800,000 daltons), the MAC is considered the dimer of C5b-9. Under specified conditions, the 33.5 S dimer could be converted to the 23 S monomer without dissociation of subunits. The MAC had the electron microscopic appearance and dimensions that are characteristic for the complement produced ultrastructural membrane lesions. SC5b-9 had a different ultrastructure that is dissimilar to the morphology of the lesions. The isolated MAC could be reincorporated into phospholipid bilayers and assumed on the surface of the resultant lipid vesicles the orientation and appearance of typical complement lesions.


2002 ◽  
Vol 363 (3) ◽  
pp. 547-552 ◽  
Author(s):  
Xavier ROUCOU ◽  
Tatiana ROSTOVTSEVA ◽  
Sylvie MONTESSUIT ◽  
Jean-Claude MARTINOU ◽  
Bruno ANTONSSON

Bax is a proapoptotic member of the Bcl-2 family of proteins. The Bax protein is dormant in the cytosol of normal cells and is activated upon induction of apoptosis. In apoptotic cells, Bax gets translocated to mitochondria, inserts into the outer membrane, oligomerizes and triggers the release of cytochrome c, possibly by channel formation. The BH3 domain-only protein Bid induces a conformational change in Bax before its insertion into the outer membrane. The mechanism by which Bid promotes Bax activation is not understood, and whether Bid is the only protein required for Bax activation is unclear. Here we report that recombinant full-length Bax (BaxFL) does not form channels in lipid bilayers when purified as a monomer. In contrast, in the presence of Bid cut with caspase 8 (cut Bid), Bax forms ionic channels in liposomes and planar bilayers. This channel-forming activity requires an interaction between cut Bid and Bax, and is inhibited by Bcl-xL. Moreover, in the absence of the putative transmembrane C-terminal domain, Bax does not form ionic channels in the presence of cut Bid. Cut Bid does not induce Bax oligomerization in liposomes and the Bax channels formed in the presence of cut Bid are not large enough to permeabilize vesicles to cytochrome c. In conclusion, our results suggest that monomeric BaxFL can form channels only in the presence of cut Bid. Cut Bid by itself is unable to induce Bax oligomerization in lipid membranes. It is suggested that another factor that might be present in mitochondria is required for Bax oligomerization.


2019 ◽  
Author(s):  
HanByul Chang ◽  
Paul Ohno ◽  
Yangdongling Liu ◽  
Franz Geiger

We report the detection of charge reversal induced by the adsorption of a cationic polyelectrolyte, poly(allylamine) hydrochloride (PAH), to buried supported lipid bilayers (SLBs), used as idealized model biological membranes. We observe changes in the surface potential in isolation from other contributors to the total SHG response by extracting the phase-shifted potential-dependent third-order susceptibility from the overall SHG signal. We demonstrate the utility of this technique in detecting both the sign of the surface potential and the point of charge reversal at buried interfaces without any prior information or complementary techniques<i>.</i>Furthermore, isolation of the second-order susceptibility contribution from the overall SHG response allows us to directly monitor changes in the Stern Layer. Finally, we characterize the Stern and Diffuse Layers over single-component SLBs formed from three different zwitterionic lipids of different gel-to-fluid phase transition temperatures (T<sub>m</sub>s). We determine whether the surface potential changes with the physical phase state (gel, transitioning, or fluid) of the SLB and incorporate 20 percent of negatively charged lipids to the zwitterionic SLB to investigate how the surface potential changes with surface charge.


1990 ◽  
Vol 95 (1) ◽  
pp. 1-27 ◽  
Author(s):  
H H Valdivia ◽  
R Coronado

The agonist effect of the dihydropyridine (DHP) (-)Bay K 8644 and the inhibitory effects of nine antagonist DHPs were studied at a constant membrane potential of 0 mV in Ca channels of skeletal muscle transverse tubules incorporated into planar lipid bilayers. Four phenylalkylamines (verapamil, D600, D575, and D890) and d-cis-diltiazem were also tested. In Ca channels activated by 1 microM Bay K 8644, the antagonists nifedipine, nitrendipine, PN200-110, nimodipine, and pure enantiomer antagonists (+)nimodipine, (-)nimodipine, (+)Bay K 8644, inhibited activity in the concentration range of 10 nM to 10 microM. Effective doses (ED50) were 2 to 10 times higher when HDPs were added to the internal side than when added to the external side. This sidedness arises from different structure-activity relationships for DHPs on both sides of the Ca channel since the ranking potency of DHPs is PN200-110 greater than (-)nimodipine greater than nifedipine approximately S207-180 on the external side while PN200-110 greater than S207-180 greater than nifedipine approximately (-)nimodipine on the internal side. A comparison of ED50's for inhibition of single channels by DHPs added to the external side and ED50's for displacement of [3H]PN200-110 bound to the DHP receptor, revealed a good quantitative agreement. However, internal ED50's of channels were consistently higher than radioligand binding affinities by up to two orders of magnitude. Evidently, Ca channels of skeletal muscle are functionally coupled to two DHP receptor sites on opposite sides of the membrane.


1994 ◽  
Vol 5 (1) ◽  
pp. 97-103 ◽  
Author(s):  
I Bezprozvanny ◽  
S Bezprozvannaya ◽  
B E Ehrlich

Effects of the xanthine drug caffeine on inositol (1,4,5)-trisphosphate (InsP3)-gated calcium (Ca) channels from canine cerebellum were studied using single channels incorporated into planar lipid bilayers. Caffeine, used widely as an agonist of ryanodine receptors, inhibited the activity of InsP3-gated Ca channels in a noncooperative fashion with half-inhibition at 1.64 mM caffeine. The frequency of channel openings was decreased more than threefold after addition of 5 mM caffeine; there was only a small effect on mean open time of the channels, and the single channel conductance was unchanged. Increased InsP3 concentration overcame the inhibitory action of caffeine, but caffeine did not reduce specific [3H]InsP3 binding to the receptor. The inhibitory action of caffeine on InsP3 receptors suggests that the action of caffeine on the intracellular Ca pool must be interpreted with caution when both ryanodine receptors and InsP3 receptors are present in the cell.


2013 ◽  
Vol 19 (S4) ◽  
pp. 107-108 ◽  
Author(s):  
A.A. Duarte ◽  
M. Raposo

Liposomes or lipid vesicles are self-closed structures formed by one or several concentric lipid bilayers with an aqueous phase inside, which may incorporate almost any molecule, namely proteins, hormones, enzymes, antibiotics, anticancer agents, antifungical agents, gene transfer agents, DNA, and whole viruses. Scientific evidences prove that unprotected liposomes containing drugs are easily released from the endoplasmic reticulum of the cell. To increase the vesicles lifetime and to activate a controlled drug release with an external stimulus, the vesicles immobilization on a surface and the factors which create conditions to the liposome rupture have to be analyzed. A number of studies have identified some of the critical stages of vesicle adsorption (adhesion), fusion, deformation, rupture, and spreading of the lipid bilayer. Nevertheless, the formation mechanisms of well-controlled continuous supported bilayers or adsorption of whole liposomes are still not fully understood. As yet it was demonstrated that a controlled adsorption of vesicles containing a small fraction of charged lipids occurs without rupture and their subsequent embedding in polyelectrolyte multilayer (PEM) films, meaning vesicles may be immobilized in an intact or slightly deformed state, which can act as drug reservoirs. Moreover, depending on the nature of the physicochemical conditions of the vesicle solution and the substrate surface, a flat lipid bilayer can be formed, known as supported lipid bilayers, which can incorporate membrane proteins and keep the native dynamics of the lipid bilayer mimicking a biological membrane. In this study, a layer of 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (DPPG) liposomes adsorbed onto PEMs cushions based on poly(ethylenimine) (PEI), poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) polyelectrolytes was analyzed by atomic force microscopy (AFM) technique in non-contact mode and quartz crystal microbalance (QCM).Sequential heterostructures of Si/PEI(PSS/PAH)4 and Si/PAH, also designated cushions, were prepared onto silicon substrates using the layer-by-layer (LbL) technique with polyelectrolyte solutions of PEI, PSS and PAH of monomeric concentrations of 0.01M. Topographic images of 1×1μm2 area of Si/PAH/DPPG (Figure 1 a), and Si/PEI(PSS/PAH)4/DPPG (Figure 1 b) LbL films were acquired by AFM. The root mean square roughness (RMS) calculated from topographies data are listed in table I. As shown, when a DPPG layer is adsorbed onto Si/PAH the RMS keeps an approximately equal value meaning that the liposome disrupted and spread onto the surface forming a planar lipid bilayer. But when a DPPG layer is adsorbed onto Si/PEI(PSS/PAH)4 the RMS value doubled, indicating that the structural integrity of the liposomes is maintained, even though there has been any deformation during adsorption. The adsorbed amount of the two PEMs and DPPG-liposomes layers was measured using a QCM and is displayed in table I. The DPPG adsorbed amount obtained on the PAH cushion was approximately equal to a planar lipid bilayer, while the adsorption onto PEI(PSS/PAH)4 was higher than the predicted for a planar lipid bilayer. This behavior suggests that the DPPG liposomes on the second PEM remained intact during adsorption. Both confirm the AFM results. Therefore we conclude that the initial roughness of the surface is a primordial factor to determine the adsorption or not of intact vesicles.The authors acknowledge the “Fundação para a Ciência e Tecnologia” (FCT-MEC) by the post-graduate scholarship SFRH/BD/62229/2009 and the “Plurianual” funding.


Soft Matter ◽  
2018 ◽  
Vol 14 (28) ◽  
pp. 5764-5774 ◽  
Author(s):  
F. Mousseau ◽  
J.-F. Berret

Inhaled nanoparticles reaching the respiratory zone in the lungs enter first in contact with the pulmonary surfactant. It is shown here that nanoparticles and lipid vesicles formulated from different surfactant mimetics interact predominantlyviaelectrostatic charge mediated attraction and do not form supported lipid bilayers spontaneously.


1997 ◽  
Vol 489 ◽  
Author(s):  
Christian W. Maier ◽  
Almuth Behrisch ◽  
Annette Kloboucek ◽  
Rudolf Merkel

AbstractWe used the micropipet aspiration technique for a study of biomembrane adhesion. Adhesion was caused by contact site A, a highly specific cell adhesion molecule, reconstituted in lipid vesicles of DOPC with 5 %(mol/mol) DOPE-PEG2000. We found adhesion and subsequent receptor aggregation in the contact zone. Additionally, electrostatic modulation of membrane adhesion was studied. Whereas addition of the negatively charged lipid SOPS to the lecithin (SOPC) host membrane suppressed adhesion due to electrostatic repulsion, a positively charged lipid (DOTAP) was surprisingly ineffective. This might be due to either phase separation of the mixture or DOTAP changing other membrane properties as bending stiffness and the Hamaker constant.


Sign in / Sign up

Export Citation Format

Share Document