scholarly journals The role of surface charge in the interaction of nanoparticles with model pulmonary surfactants

Soft Matter ◽  
2018 ◽  
Vol 14 (28) ◽  
pp. 5764-5774 ◽  
Author(s):  
F. Mousseau ◽  
J.-F. Berret

Inhaled nanoparticles reaching the respiratory zone in the lungs enter first in contact with the pulmonary surfactant. It is shown here that nanoparticles and lipid vesicles formulated from different surfactant mimetics interact predominantlyviaelectrostatic charge mediated attraction and do not form supported lipid bilayers spontaneously.

2013 ◽  
Vol 4 (10) ◽  
pp. 1339-1351 ◽  
Author(s):  
Erik Hellstrand ◽  
Marie Grey ◽  
Marie-Louise Ainalem ◽  
John Ankner ◽  
V. Trevor Forsyth ◽  
...  

2018 ◽  
Vol 9 (18) ◽  
pp. 4285-4298 ◽  
Author(s):  
Alicia C. McGeachy ◽  
Emily R. Caudill ◽  
Dongyue Liang ◽  
Qiang Cui ◽  
Joel A. Pedersen ◽  
...  

Quantifying the number of charges on peptides bound to interfaces requires reliable estimates of (i) surface coverage and (ii) surface charge, both of which are notoriously difficult parameters to obtain, especially at solid/water interfaces. Here, we report the thermodynamics and electrostatics governing the interactions of l-lysine and l-arginine octamers (Lys8 and Arg8) with supported lipid bilayers prepared.


Nanoscale ◽  
2017 ◽  
Vol 9 (39) ◽  
pp. 14967-14978 ◽  
Author(s):  
F. Mousseau ◽  
C. Puisney ◽  
S. Mornet ◽  
R. Le Borgne ◽  
A. Vacher ◽  
...  

Supported lipid bilayers on 40 nm silica nanoparticles from an exogenous pulmonary surfactant.


2021 ◽  
Author(s):  
Karan Bali ◽  
Zeinab Mohamed ◽  
Anna-Maria Pappa ◽  
Susan Daniel ◽  
Clemens F. Kaminski ◽  
...  

Supported lipid bilayers (SLBs) made from reconstituted lipid vesicles are an important tool in molecular biology. A breakthrough in the field has come with the use of vesicles derived from cell membranes to form SLBs. These new supported bilayers, consisting both of natural and synthetic components, provide a physiologically relevant system on which to study protein-protein interactions as well as protein-ligand interactions and other lipid membrane properties. These complex bilayer systems hold promise but have not yet been fully characterised in terms of their composition, ratio of natural to synthetic component and membrane protein content. Here, we describe a method of correlative atomic force (AFM) with structured illumination microscopy (SIM) for the accurate mapping of complex lipid bilayers that consist of a synthetic fraction and a fraction of lipids derived from Escherichia coli outer membrane vesicles (OMVs). We exploit the enhanced resolution and molecular specificity that SIM can offer to identify areas of interest in these bilayers and the atomic scale resolution that the AFM provides to create detailed topography maps of the bilayers. We are thus able to understand the way in which the two different lipid fractions (natural and synthetic) mix within the bilayers, quantify the amount of bacterial membrane incorporated in the bilayer and directly visualise the interaction of these bilayers with bacteria-specific, membrane-binding proteins. Our work sets the foundation for accurately understanding the composition and properties of OMV-derived SLBs and establishes correlative AFM/ SIM as a method for characterising complex systems at the nanoscale.


Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 262 ◽  
Author(s):  
Guan-Lin Wu ◽  
Yi-Jun Shi ◽  
Chia-Hui Huang ◽  
Yuan-Chin Lee ◽  
Liang-Jun Wang ◽  
...  

It is widely accepted that snake venom cardiotoxins (CTXs) target the plasma membranes of cells. In the present study, we investigated the role of Asp residues in the interaction of Naja atra cardiotoxin 1 (CTX1) and cardiotoxin 3 (CTX3) with phospholipid bilayers using chemical modification. CTX1 contains three Asp residues at positions 29, 40, and 57; CTX3 contains two Asp residues at positions 40 and 57. Compared to Asp29 and Asp40, Asp57 was sparingly modified with semi-carbazide, as revealed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass and mass/mass analyses. Thus, semi-carbazide-modified CTX1 (SEM-CTX1) mainly contained modified Asp29 and Asp40, while SEM-CTX3 contained modified Asp40. Compared to that of native toxins, trifluoroethanol easily induced structural transition of SEM-CTX1 and SEM-CTX3, suggesting that the structural flexibility of CTXs was constrained by Asp40. Modification of Asp29 and Asp40 markedly promoted the ability of CTX1 to induce permeability of cell membranes and lipid vesicles; CTX3 and SEM-CTX3 showed similar membrane-damaging activity. Modification of Asp residues did not affect the membrane-binding capability of CTXs. Circular dichroism spectra of SEM-CTX3 and CTX3 were similar, while the gross conformation of SEM-CTX1 was distinct from that of CTX1. The interaction of CTX1 with membrane was distinctly changed by Asp modification. Collectively, our data suggest that Asp29 of CTX1 suppresses the optimization of membrane-bound conformation to a fully active state and that the function of Asp40 in the structural constraints of CTX1 and CTX3 is not important for the manifestation of membrane-perturbing activity.


2018 ◽  
Vol 2 (4) ◽  
pp. 50 ◽  
Author(s):  
Fanny Mousseau ◽  
Evdokia Oikonomou ◽  
Victor Baldim ◽  
Stéphane Mornet ◽  
Jean-François Berret

The impact of nanomaterials on lung fluids, or on the plasma membrane of living cells, has prompted researchers to examine the interactions between nanoparticles and lipid vesicles. Recent studies have shown that nanoparticle-lipid interaction leads to a broad range of structures including supported lipid bilayers (SLB), particles adsorbed at the surface or internalized inside vesicles, and mixed aggregates. Currently, there is a need to have simple protocols that can readily evaluate the structures made from particles and vesicles. Here we apply the method of continuous variation for measuring Job scattering plots and provide analytical expressions for the scattering intensity in various scenarios. The result that emerges from the comparison between experiments and modeling is that electrostatics play a key role in the association, but it is not sufficient to induce the formation of supported lipid bilayers.


2018 ◽  
Vol 6 (26) ◽  
pp. 12281-12290 ◽  
Author(s):  
Hanieh Niroomand ◽  
Ravi Pamu ◽  
Dibyendu Mukherjee ◽  
Bamin Khomami

This work elucidates the role of natural membrane confinements of photosystem I complexes (PSI) in light-induced charge separation by comparing the photocurrents of isolated PSI with PSI encapsulated within solid-supported lipid bilayers on electrodes. Our results indicate the critical role of the microenvironment alterations in achieving enhanced photocurrent and stability.


2010 ◽  
Vol 98 (3) ◽  
pp. 673a
Author(s):  
Lisa V. Simonsson ◽  
Peter Jönsson ◽  
Gudrun Stengel ◽  
Fredrik Höök

2019 ◽  
Author(s):  
Naomi Dalchand ◽  
Merve Dogangun ◽  
Paul E. Ohno ◽  
Emily Ma ◽  
Alex Martinson ◽  
...  

<div><div><div><p>Water is vital to many biochemical processes and is necessary for driving many fundamental interactions of cell membranes with their external environments, yet it is difficult to probe the membrane/water interface directly and without the use of external labels. Here, we employ vibrational sum frequency generation (SFG) spectroscopy to understand the role of interfacial water molecules above bilayers formed from zwitterionic (phosphatidylcholine, PC) and anionic (phosphatidylglycerol, PG, and phosphatidylserine, PS) lipids as they are exposed to the common polycation poly (allylamine hydrochloride) (PAH) in 100 mM NaCl. We show that as the concentration of PAH is increased, the interfacial water molecules are irreversibly displaced and find that it requires 10 times more PAH to displace interfacial water molecules from membranes formed from purely zwitterionic lipids when compared to membranes that contain the anionic PG and PS lipids. This outcome is likely due to difference in (1) the energy with which water molecules are bound to the lipid headgroups, (2) the number of water molecules bound to the headgroups, which is related to the headgroup area, and (3) the electrostatic interactions between the PAH molecules and the negatively charged lipids that are favored when compared to the zwitterionic lipid headgroups. The findings presented here contribute to establishing causal relationships in nanotoxicology and to understanding, controlling, and predicting the initial steps that lead to the lysis of cells exposed to membrane disrupting polycations, or to transfection.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document