Weil-Petersson metric in the moduli space of compact polarized K�hler-Einstein manifolds of zero first Chern class

1986 ◽  
Vol 54 (4) ◽  
pp. 405-438 ◽  
Author(s):  
Antonella Nannicini
2000 ◽  
Vol 52 (3) ◽  
pp. 582-612 ◽  
Author(s):  
Lisa C. Jeffrey ◽  
Jonathan Weitsman

AbstractThis paper treats the moduli space g,1(Λ) of representations of the fundamental group of a Riemann surface of genus g with one boundary component which send the loop around the boundary to an element conjugate to exp Λ, where Λ is in the fundamental alcove of a Lie algebra. We construct natural line bundles over g,1(Λ) and exhibit natural homology cycles representing the Poincaré dual of the first Chern class. We use these cycles to prove differential equations satisfied by the symplectic volumes of these spaces. Finally we give a bound on the degree of a nonvanishing element of a particular subring of the cohomology of the moduli space of stable bundles of coprime rank k and degree d.


2009 ◽  
Vol 20 (11) ◽  
pp. 1363-1396 ◽  
Author(s):  
EZIO VASSELLI

C*-endomorphisms arising from superselection structures with nontrivial center define a 'rank' and a 'first Chern class'. Crossed products by such endomorphisms involve the Cuntz–Pimsner algebra of a vector bundle having the above-mentioned rank, first Chern class and can be used to construct a duality for abstract (nonsymmetric) tensor categories versus group bundles acting on (nonsymmetric) Hilbert bimodules. Existence and unicity of the dual object (i.e. the 'gauge' group bundle) are not ensured: we give a description of this phenomenon in terms of a certain moduli space associated with the given endomorphism. The above-mentioned Hilbert bimodules are noncommutative analogs of gauge-equivariant vector bundles in the sense of Nistor–Troitsky.


2021 ◽  
Vol 9 ◽  
Author(s):  
Patrick Graf ◽  
Martin Schwald

Abstract Let X be a normal compact Kähler space with klt singularities and torsion canonical bundle. We show that X admits arbitrarily small deformations that are projective varieties if its locally trivial deformation space is smooth. We then prove that this unobstructedness assumption holds in at least three cases: if X has toroidal singularities, if X has finite quotient singularities and if the cohomology group ${\mathrm {H}^{2} \!\left ( X, {\mathscr {T}_{X}} \right )}$ vanishes.


2018 ◽  
Vol 12 (1-2) ◽  
pp. 239-249
Author(s):  
Massimiliano Pontecorvo

Author(s):  
Alina Marian ◽  
Dragos Oprea ◽  
Rahul Pandharipande

2015 ◽  
Vol 29 (24) ◽  
pp. 1550135
Author(s):  
Paul Bracken

It is shown that the Kubo equation for the Hall conductance can be expressed as an integral which implies quantization of the Hall conductance. The integral can be interpreted as the first Chern class of a [Formula: see text] principal fiber bundle on a two-dimensional torus. This accounts for the conductance given as an integer multiple of [Formula: see text]. The formalism can be extended to deduce the fractional conductivity as well.


2004 ◽  
Vol 188 (1) ◽  
pp. 87-103 ◽  
Author(s):  
Xu-Jia Wang ◽  
Xiaohua Zhu

1972 ◽  
Vol 48 ◽  
pp. 1-17 ◽  
Author(s):  
Alan L. Mayer

Let V be a 2-dimensional compact complex manifold. V is called a K-3 surface if : a) the irregularity q = dim H1(V, θ) of V vanishes and b) the first Chern class c1 of V vanishes. The canonical sheaf (of holo-morphic 2-forms) K of such a surface is trivial, since q = 0 implies that the Chern class map cx : Pic (V) → H2(V, Z) is injective : thus V has a nowhere zero holomorphic 2-form.


Sign in / Sign up

Export Citation Format

Share Document