A study of the biochemistry and cytochemical localization of ?-glycerophosphatase activity in root tips of maize and pea

PROTOPLASMA ◽  
1971 ◽  
Vol 73 (3-4) ◽  
pp. 417-441 ◽  
Author(s):  
R. Sexton ◽  
J. Cronshaw ◽  
J. L. Hall
1978 ◽  
Vol 26 (10) ◽  
pp. 772-781 ◽  
Author(s):  
W D Klohs ◽  
C W Goff ◽  
R J Bernacki

As the initial step toward the cytochemical localization of glycosyl-transferases in situ, biochemical determinations of these enzyme activities from onion root tips and L1210 cells were performed before and after fixation as well as in the presence of lead ions. Glycosyltransferase activity from roots fixed in buffered formaldehyde or glutaraldehyde before homogenization decreased as the concentration of the fixative or fixation time was increased. Formaldehyde fixation was less inhibitory than glutaraldehyde; 35% of the glycosyltransferase activity was retained after 30 min fixation in 2% formaldehyde while 25% of the enzyme activity remained after a similar fixation in glutaraldehyde. Substantially higher levels of L1210 cell glycosyltransferase activity were retained after a 30 min 2% formaldehyde fixation (60% sialyltransferase; 82% galactosyltransferase), but inhibition by glutaraldehyde was similar to that observed for onion root galactosyltransferase. Glycosyltransferase from formaldehyde-fixed roots was inhbited 35% by lead nitrate, but sialytransferase from formaldehyde-fixed L1210 cells was unaffected by lead ions. These findings are encouraging for further studies aimed at the development of cytochemical technique to localize glycosyltransferase in plant and animal tissues.


1956 ◽  
Vol 2 (1) ◽  
pp. 87-92 ◽  
Author(s):  
William A. Jensen ◽  
Leroy G. Kavaljian

The intracellular distribution of ascorbic acid was studied in frozen-dried root tips of Allium cepa and Vicia faba by the silver nitrate procedure. The sites of the ascorbic acid as indicated by the deposited silver appear as spherical (0.2 to 0.6 µ in diameter) cytoplasmic particles. The site appears to have small amounts of lipides and to be rich in ribonucleic acid. These particles are concluded to be submicroscopic in size and associated, in the elongating cell, with the cell surface. In the meristematic cells they appear fewer in number and are distributed throughout the cytoplasm.


Author(s):  
W. A. Shannon ◽  
M. A. Matlib

Numerous studies have dealt with the cytochemical localization of cytochrome oxidase via cytochrome c. More recent studies have dealt with indicating initial foci of this reaction by altering incubation pH (1) or postosmication procedure (2,3). The following study is an attempt to locate such foci by altering membrane permeability. It is thought that such alterations within the limits of maintaining morphological integrity of the membranes will ease the entry of exogenous substrates resulting in a much quicker oxidation and subsequently a more precise definition of the oxidative reaction.The diaminobenzidine (DAB) method of Seligman et al. (4) was used. Minced pieces of rat liver were incubated for 1 hr following toluene treatment (5,6). Experimental variations consisted of incubating fixed or unfixed tissues treated with toluene and unfixed tissues treated with toluene and subsequently fixed.


Author(s):  
M. Arif Hayat

Although it is recognized that niacin (pyridine-3-carboxylic acid), incorporated as the amide in nicotinamide adenine dinucleotide (NAD) or in nicotinamide adenine dinucleotide phosphate (NADP), is a cofactor in hydrogen transfer in numerous enzyme reactions in all organisms studied, virtually no information is available on the effect of this vitamin on a cell at the submicroscopic level. Since mitochondria act as sites for many hydrogen transfer processes, the possible response of mitochondria to niacin treatment is, therefore, of critical interest.Onion bulbs were placed on vials filled with double distilled water in the dark at 25°C. After two days the bulbs and newly developed root system were transferred to vials containing 0.1% niacin. Root tips were collected at ¼, ½, 1, 2, 4, and 8 hr. intervals after treatment. The tissues were fixed in glutaraldehyde-OsO4 as well as in 2% KMnO4 according to standard procedures. In both cases, the tissues were dehydrated in an acetone series and embedded in Reynolds' lead citrate for 3-10 minutes.


Author(s):  
S. Edith Taylor ◽  
Patrick Echlin ◽  
May McKoon ◽  
Thomas L. Hayes

Low temperature x-ray microanalysis (LTXM) of solid biological materials has been documented for Lemna minor L. root tips. This discussion will be limited to a demonstration of LTXM for measuring relative elemental distributions of P,S,Cl and K species within whole cells of tobacco leaves.Mature Wisconsin-38 tobacco was grown in the greenhouse at the University of California, Berkeley and picked daily from the mid-stalk position (leaf #9). The tissue was excised from the right of the mid rib and rapidly frozen in liquid nitrogen slush. It was then placed into an Amray biochamber and maintained at 103K. Fracture faces of the tissue were prepared and carbon-coated in the biochamber. The prepared sample was transferred from the biochamber to the Amray 1000A SEM equipped with a cold stage to maintain low temperatures at 103K. Analyses were performed using a tungsten source with accelerating voltages of 17.5 to 20 KV and beam currents from 1-2nA.


Author(s):  
Judith A. Murphy ◽  
Mary R. Thompson ◽  
A.J. Pappelis

In an attempt to identify polysaccharide components in thin sections of D. maydis, procedures were employed such that a PAS localization could be carried out. Three different fixatives were evaluated ie. glutaraldehyde, formaldehyde and paraformaldehyde. These were used in conjunction with periodic acid (PA), thiosemicarbazide(TSC), and osmium tetroxide(Os) to localize polysaccharides in V. maydis using a pre-embedded reaction procedure. Polysaccharide localization is based on the oxidation of vic-glycol groups by PA, and the binding of TSC as a selective reaction center for the formation of osmium black. The reaction product is sufficiently electron opaque, insoluble in lipids, not altered when tissue is embedded, and has a fine amorphous character.


Author(s):  
Y. R. Chen ◽  
Y. F. Huang ◽  
W. S. Chen

Acid phosphatases are widely distributed in different tisssues of various plants. Studies on subcellular localization of acid phosphatases show they might be present in cell wall, plasma lemma, mitochondria, plastid, vacuole and nucleus. However, their localization in rice cell varies with developmental stages of cells and plant tissues. In present study, acid phosphatases occurring in root cap are examined.Sliced root tips of ten-day-old rice(Oryza sativa) seedlings were fixed in 0.1M cacodylate buffer containing 2.5% glutaraldehyde for 2h, washed overnight in same buffer solution, incubated in Gomori's solution at 37° C for 90min, post-fixed in OsO4, dehydrated in ethanol series and finally embeded in Spurr's resin. Sections were doubly stained with uranyl acetate and lead citrate, and observed under Hitachi H-600 at 75 KV.


Author(s):  
P.T. Nguyen ◽  
C. Uphoff ◽  
C.L. Stinemetz

Considerable evidence suggest that the calcium-binding protein calmodulin (CaM) may mediate calcium action and/or transport important in the gravity response of plants. Calmodulin is present in both shoots and roots and is capable of regulating calcium transport in plant vesicles. In roots calmodulin is concentrated in the tip, the gravisensing region of the root; and is reported to be closely associated with amyloplasts, organelles suggested to play a primary role in gravi-perception. Inhibitors of CaM such as chlorpromazine, calmidazolium, and compound 48/80 interfere with the gravitropic response of both snoots and roots. The magnitude of the inhibition corresponded well with the extent to which the drug binds to endogenous CaM. Compound 48/80 and calmidazolium block gravi-induced changes in electrical currents across root tips, a phenomenon thought to be associated with the sensing of the gravity stimulus.In this study, we have investigated the subcellular distribution of CaM in graviresponsive and non-graviresponsive root caps of the maize cultivar Merit.


Sign in / Sign up

Export Citation Format

Share Document