Immunolocalization of H+-ATPases in the plasma membrane of pollen grains and pollen tubes ofLilium longiflorum

PROTOPLASMA ◽  
1992 ◽  
Vol 171 (1-2) ◽  
pp. 55-63 ◽  
Author(s):  
G. Obermeyer ◽  
M. L�tzelschwab ◽  
H. -G. Heumann ◽  
M. H. Weisenseel
2007 ◽  
Vol 97 (8) ◽  
pp. 892-899 ◽  
Author(s):  
Khalid Amari ◽  
Lorenzo Burgos ◽  
Vicente Pallas ◽  
María Amelia Sanchez-Pina

The route of infection and the pattern of distribution of Prunus necrotic ringspot virus (PNRSV) in apricot pollen were studied. PNRSV was detected both within and on the surface of infected pollen grains. The virus invaded pollen during its early developmental stages, being detected in pollen mother cells. It was distributed uniformly within the cytoplasm of uni- and bicellular pollen grains and infected the generative cell. In mature pollen grains, characterized by their triangular shape, the virus was located mainly at the apertures, suggesting that PNRSV distribution follows the same pattern as the cellular components required for pollen tube germination and cell wall tube synthesis. PNRSV also was localized inside pollen tubes, especially in the growth zone. In vitro experiments demonstrated that infection with PNRSV decreases the germination percentage of pollen grains by more than half and delays the growth of pollen tubes by ≈24 h. However, although PNRSV infection affected apricot pollen grain performance during germination, the presence of the virus did not completely prevent fertilization, because the infected apricot pollen tubes, once germinated, were able to reach the apricot embryo sacs, which, in the climatic conditions of southeastern Spain, mature later than in other climates. Thus, infected pollen still could play an important role in the vertical transmission of PNRSV in apricot.


2014 ◽  
Vol 65 (1-2) ◽  
pp. 101-105 ◽  
Author(s):  
Renata Śnieżko ◽  
Krystyna Winiarczyk

After selfpollination of <em>Sinapis alba</em> L. pollen tubes growth is inhibited on the stigma. The pollen grains germinate 3-4 hours after pollination. The pollen give rise to one or more pollen tubes. They grow along the papillae. In the place of contact between the papilla and pollen tube the pellicula is digested. Then the direction of pollen tube growth changes completely. Pollen tubes grow back on the exine of their own pollen grain, or turn into the air. The pollen tubes growth was inhibited in 6-8 hours after selfpollination. After crosspollination usually there is no incompatibility reaction.


2020 ◽  
Author(s):  
Hyun Kyung Lee ◽  
Daphne R. Goring

SummaryIn flowering plants, continuous cell-cell communication between the compatible male pollen grain/growing pollen tube and the female pistil is required for successful sexual reproduction. In Arabidopsis thaliana, the later stages of this dialogue are mediated by several peptide ligands and receptor kinases that guide pollen tubes to the ovules for the release of sperm cells. Despite a detailed understanding of these processes, a key gap remains on the nature of the regulators that function at the earlier stages. Here, we report on two groups of A. thaliana receptor kinases, the LRR-VIII-2 RK subclass and the SERKs, that function in the female reproductive tract to regulate the compatible pollen grains and early pollen tube growth, both essential steps for the downstream processes leading to fertilization. Multiple A. thaliana LRR-VIII-2 RK and SERK knockout mutant combinations were created, and several phenotypes were observed such as reduced wild-type pollen hydration and reduced pollen tube travel distances. As these mutant pistils displayed a wild-type morphology, the observed altered responses of the wild-type pollen are proposed to result from the loss of these receptor kinases leading to an impaired pollen-pistil dialogue at these early stages. Furthermore, using pollen from related Brassicaceae species, we also discovered that these receptor kinases are required in the female reproductive tract to establish a reproductive barrier to interspecies pollen. Thus, we propose that the LRR-VIII-2 RKs and the SERKs play a dual role in the preferential selection and promotion of intraspecies pollen over interspecies pollen.


2020 ◽  
Vol 195 (1) ◽  
pp. 93-105
Author(s):  
Simone P Teixeira ◽  
Marina F B Costa ◽  
João Paulo Basso-Alves ◽  
Finn Kjellberg ◽  
Rodrigo A S Pereira

Abstract The synstigma is a structure formed by clusters of two to several stigmas, whether in the same or between different flowers. Although rare in angiosperms, synstigmas are found in c. 500 out of the c. 750 Ficus spp. (Moraceae). This floral structure is associated with fig-fig wasp pollinating mutualism. The synstigma structure and pollen tube pathways were studied in six Ficus spp. from Ficus section Americanae to test the hypothesis that the synstigma allows pollen grains deposited on a stigma to emit pollen tubes that can grow laterally and fertilize surrounding flowers. Syconia containing recently pollinated stigmas were collected and dissected, and the stigmas were processed for analyses with light and scanning and transmission electron microscopy. The arrangement of the synstigmas across species can be spaced or congested, with the number of stigmas per synstigma ranging from two to 20. Contact between the stigmas in a synstigma occurs by the intertwining of the stigmatic branches and papillae; their union is firm or loose. The pollen tube grows through live cells of the transmitting tissue until reaching the ovule micropyle. Curved pollen tubes growing from one stigma to another were observed in five out of the six species studied. The curvilinear morphology of pollen tubes probably results from competition by pollen between the stigmas composing a synstigma via chemotropic signals. The synstigma appears to be a key adaptation that ensures seed production by flowers not exploited by the fig wasps in actively pollinated Ficus spp.


1956 ◽  
Vol 9 (3) ◽  
pp. 321 ◽  
Author(s):  
DL Hayman

Pha/a1'is roau/c8CeJ18 Des!'. is a completely Relf-incompatible, diploid, perennial gmss. incompatible pollen gmins germinate normally but the pollen tubes fail to penetrate far into tho 8Lyle. The ineompatibility interrelationships of parents and progenios were dotermined by olmen-ing the pollen tubes and pollen grains after pollination. This eould be clone successfully only in plants induced to Hower early by eXJlosure to 100tg day treatment. Incompatibility is controlled by two loci, each with a series of multiple alleles. The loci are probably not linked but the data would not. allow detection of loose linlmge. Pollen determination is gametophytic, and the genes aet indepoudelltly in the style. 'eho rolationship of this incompatihility system to previously described systems is eonsid(lred, and theoretically possible incompatihility systems based on genetical eOlltrol nt. two loci are suggested.


Author(s):  
María Flores-Tornero ◽  
Lele Wang ◽  
David Potěšil ◽  
Said Hafidh ◽  
Frank Vogler ◽  
...  

Abstract Key message Analyses of secretomes of in vitro grown pollen tubes from Amborella, maize and tobacco identified many components of processes associated with the cell wall, signaling and metabolism as well as novel small secreted peptides. Abstract Flowering plants (angiosperms) generate pollen grains that germinate on the stigma and produce tubes to transport their sperm cells cargo deep into the maternal reproductive tissues toward the ovules for a double fertilization process. During their journey, pollen tubes secrete many proteins (secreted proteome or secretome) required, for example, for communication with the maternal reproductive tissues, to build a solid own cell wall that withstands their high turgor pressure while softening simultaneously maternal cell wall tissue. The composition and species specificity or family specificity of the pollen tube secretome is poorly understood. Here, we provide a suitable method to obtain the pollen tube secretome from in vitro grown pollen tubes of the basal angiosperm Amborella trichopoda (Amborella) and the Poaceae model maize. The previously published secretome of tobacco pollen tubes was used as an example of eudicotyledonous plants in this comparative study. The secretome of the three species is each strongly different compared to the respective protein composition of pollen grains and tubes. In Amborella and maize, about 40% proteins are secreted by the conventional “classic” pathway and 30% by unconventional pathways. The latter pathway is expanded in tobacco. Proteins enriched in the secretome are especially involved in functions associated with the cell wall, cell surface, energy and lipid metabolism, proteolysis and redox processes. Expansins, pectin methylesterase inhibitors and RALFs are enriched in maize, while tobacco secretes many proteins involved, for example, in proteolysis and signaling. While the majority of proteins detected in the secretome occur also in pollen grains and pollen tubes, and correlate in the number of mapped peptides with relative gene expression levels, some novel secreted small proteins were identified. Moreover, the identification of secreted proteins containing pro-peptides indicates that these are processed in the apoplast. In conclusion, we provide a proteome resource from three distinct angiosperm clades that can be utilized among others to study the localization, abundance and processing of known secreted proteins and help to identify novel pollen tube secreted proteins for functional studies.


2010 ◽  
Vol 154 (4) ◽  
pp. 1921-1928 ◽  
Author(s):  
Heidi Pertl ◽  
Magdalena Pöckl ◽  
Christian Blaschke ◽  
Gerhard Obermeyer

1989 ◽  
Vol 19 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Anna M. Colangeli ◽  
John N. Owens

The development and function of the pollination mechanism is described for hemlock (Tsugaheterophylla (Raf.) Sarg.). Controlled pollinations at various stages following bud burst were used to define the period of maximum receptivity. Western hemlock has a pollination mechanism unlike that observed in other native conifers. The pollen grains were not taken into the micropyles; instead, the roughly sculptured pollen grains adhered to the long epicuticular wax covering the bracts. Seed cones became receptive to pollen soon after the bracts emerged from the bud scales and remained receptive until shortly before cone closure. Several days after the cones fully emerged beyond the bud scales, the ovuliferous scales elongated over the bracts, trapping the pollen between the bracts and scales. Several weeks after pollination, pollen germinated on the bracts and formed long pollen tubes which grew towards and into the micropyles.


Sign in / Sign up

Export Citation Format

Share Document