The effect of dichloroacetic acid on the electric and hydrodynamic properties of poly-γ-benzyl-L-glutamate in solution

1974 ◽  
Vol 252 (1) ◽  
pp. 26-31 ◽  
Author(s):  
Hidefusa Ohe ◽  
Hiroshi Watanabe ◽  
K. Yoshioka
1978 ◽  
Vol 56 (11) ◽  
pp. 1569-1574
Author(s):  
Nga Ho-Duc

Theoretically we can determine the disordered or ordered structure of polypeptides and their dimensions in dilute solutions from hydrodynamic properties. We have presently a wealth of theories for random coil chains and a limited but sufficient number of theories for ordered chains for interpreting experimental results.Viscosity data for seven poly(γ-benzyl-L-glutamate) samples in 1,2-dichloroethane at 25 °C are analyzed and the length per monomeric residue (h) is calculated according to the equivalent ellipsoid approach. The degree of flexibility or rigidity is characterized by calculating Ns, the number of monomer units in a rigid segment or a Kuhn statistical segment; the determination of Ns is made by applying Yamakawa and Fujii's equation modified by Vitovskaya and Tsvetkov.Values obtained for h assuming the solute molecule to be a rigid, stiff chain, range between 1.3 to 2 Å. One notices that the h value close to 1.5 Å is found for the three following molecular weights: 1.8 × 105, 1.7 × 105, and 1.5 × 105. They are, in fact, the samples having a length in good quantitative agreement with that of the rigid segment determined by the method of Vitovskaya and Tsvetkov. This rigid segment corresponds to a sample of 700 ± 100 monomer units.The analysis of the experimental data of poly(γ-benzyl-L-glutamate) in dichloroacetic acid indicates that, in addition to the formation of hydrogen bonds, other interactions between the polypeptide and the solvent are present.In summary, we may conclude that the study of the helix–coil transition using hydrodynamic measurements is judged satisfactory but the determination of characteristic dimensions used to describe exactly the conformation of the macromolecule is somewhat ambiguous. One major problem is the degree of flexibility encountered with high molecular weight chains. However, to get around this difficulty, we propose, according to our results, a method which consists in determining the number of monomer units within a rigid segment from the different values found for h and then the dimensions from the samples for which the chain length is in good agreement with that of a rigid segment thus determined.


2020 ◽  
Vol 14 (5) ◽  
pp. 829-834
Author(s):  
G. V. Karpov ◽  
E. S. Vasiliev ◽  
N. D. Volkov ◽  
I. I. Morozov ◽  
S. V. Savilov ◽  
...  
Keyword(s):  

Author(s):  
Tuyen Vu Nguyen ◽  
Weiguang Li

The dynamic and hydrodynamic properties of the pad in the fluid pivot journal bearing are investigated in this paper. Preload coefficients, recess area, and size gap, which were selected as input parameters to investigate, are important parameters of fluid pivot journal bearing. The pad’s pendulum angle, lubricant oil flow through the gap, and recess pressure which characterizes the squeeze film damper were investigated with different preload coefficients, recess area, and gap sizes. The computational models were established and numerical methods were used to determine the equilibrium position of the shaft-bearing system. Since then, the pendulum angle of the pad, liquid flow, and recess pressure were determined by different eccentricities.


1989 ◽  
Vol 264 (1) ◽  
pp. 551-556
Author(s):  
N A Carrell ◽  
H P Erickson ◽  
J McDonagh

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 268
Author(s):  
Olga V. Soloveva ◽  
Sergei A. Solovev ◽  
Ruzil R. Yafizov

In this work, a study was carried out to compare the filtering and hydrodynamic properties of granular filters with solid spherical granules and spherical granules with modifications in the form of micropores. We used the discrete element method (DEM) to construct the geometry of the filters. Models of granular filters with spherical granules with diameters of 3, 4, and 5 mm, and with porosity values of 0.439, 0.466, and 0.477, respectively, were created. The results of the numerical simulation are in good agreement with the experimental data of other authors. We created models of granular filters containing micropores with different porosity values (0.158–0.366) in order to study the micropores’ effect on the aerosol motion. The study showed that micropores contribute to a decrease in hydrodynamic resistance and an increase in particle deposition efficiency. There is also a maximum limiting value of the granule microporosity for a given aerosol particle diameter when a further increase in microporosity leads to a decrease in the deposition efficiency.


Sign in / Sign up

Export Citation Format

Share Document