Triple differential ionisation cross-section of hydrogen atom bye �-impact including exchange

1994 ◽  
Vol 30 (1) ◽  
pp. 35-38 ◽  
Author(s):  
Anita Bandyopadhyay ◽  
K. Roy ◽  
N. C. Sil
1999 ◽  
Vol 09 (PR6) ◽  
pp. Pr6-119-Pr6-122
Author(s):  
R. Flammin ◽  
E. Fainelli ◽  
L. Avaldi

2018 ◽  
Vol 613 ◽  
pp. A55
Author(s):  
F. Calvo ◽  
L. Belluzzi ◽  
O. Steiner

Context.The spectrum of the hydrogen atom was explained by Bohr more than one century ago. We revisit here some of the aspects of the underlying quantum structure, with a modern formalism, focusing on the limit of the Balmer series.Aims.We investigate the behaviour of the absorption coefficient of the isolated hydrogen atom in the neighbourhood of the Balmer limit.Methods.We analytically computed the total cross-section arising from bound-bound and bound-free transitions in the isolated hydrogen atom at the Balmer limit, and established a simplified semi-analytical model for the surroundings of that limit. We worked within the framework of the formalism of Landi Degl’Innocenti & Landolfi (2004, Astrophys. Space Sci. Lib., 307), which permits an almost straight-forward generalization of our results to other atoms and molecules, and which is perfectly suitable for including polarization phenomena in the problem.Results.We analytically show that there is no discontinuity at the Balmer limit, even though the concept of a “Balmer jump” is still meaningful. Furthermore, we give a possible definition of the location of the Balmer jump, and we check that this location is dependent on the broadening mechanisms. At the Balmer limit, we compute the cross-section in a fully analytical way.Conclusions.The Balmer jump is produced by a rapid drop of the total Balmer cross-section, yet this variation is smooth and continuous when both bound-bound and bound-free processes are taken into account, and its shape and location is dependent on the broadening mechanisms.


Author(s):  
Fukiko Ota ◽  
Shigeru Abe ◽  
Keisuke Hatada ◽  
Kiyoshi Ueda ◽  
Sergio Díaz-Tendero ◽  
...  

Imaging ultrafast hydrogen migration with few- or sub-femtosecond time resolution is a challenge for ultrafast spectroscopy due to the lightness and small scattering cross section of the moving hydrogen atom....


2020 ◽  
pp. 93-102
Author(s):  
Kishori Yadav ◽  
S.P. Gupta ◽  
J.J. Nakarmi

In the present study, we have investigated scattering of an electron by hydrogen atoms in the presence of the elliptical polarized laser field. We have discussed the polarization effect of laser field on hydrogen atom and effect of the resulted polarized potential on differential scattering cross-section is studied. We assume the scattered electrons having kinetic energy (~3000 eV) and laser field of moderate field strength because it is permitted to treat the scattering process in first Born approximation and the scattering electron was described by Volkov wave function. We found that the differential scattering cross-section area increases with the increase of the kinetic energy of the incident electron and there is no effect of changing the value of polarizing angle on the differential cross-section with kinetic energy. We observed that differential scattering cross-section in elliptical polarization in the high energy region depends upon the laser intensity and the incident energy for a linearly polarized field.


Sign in / Sign up

Export Citation Format

Share Document