balmer series
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 22)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 5 (4) ◽  
pp. 198-210
Author(s):  
M. K. Dosbolayev ◽  
A. B. Tazhen ◽  
T. S. Ramazanov

This paper presents the experimental results on electron, ion temperatures and densities in a pulsed plasma accelerator. The values of electron densities and temperatures were computed using the methods of relative intensities of Hα and Hβ lines, Hβ Stark broadening, and the technique is based on Faraday cup beam current measurements. In this work, a linear optical spectrometer S-100 was used to acquire the emission spectra of hydrogen and air plasmas. In this spectrum, there are some lines due to Fe, Cu, N2, O2, and H2. The series of visible lines in the hydrogen atom spectrum are named the Balmer series. The spectral emissions of iron and copper occur throughout the gas breakdown and ignition of an arc discharge, during the erosion and sputtering of materials. The vacuum chamber and coaxial electrodes were made. The electron temperatures and densities in a pulsed plasma accelerator, measured via relative intensities of spectral lines and Stark broadening, at a charging voltage of a capacitor bank of 3 kV and a working gas pressure in a vacuum chamber of 40 mTorr, were 2.6 eV and 1.66 · 1016 cm−3 for hydrogen plasma. These results were compared with the Faraday cup beam current measurements. However, no match was found. Considering and analyzing this distinction, we concluded that the spectral method of plasma diagnostics provides more accurate results than electrical measurement. The theory of probe measurements can give approximate results in a moving plasma.


2021 ◽  
Vol 16 (12) ◽  
pp. T12009
Author(s):  
Mohammad Sh. Odeh

Abstract The purpose of this paper is to show how we can obtain spectra for different astronomical objects using low coat equipment. Where a high-efficiency diffraction grating named “The Star Analyzer” was used by the International Astronomical Center (IAC) in Abu Dhabi, UAE to get the spectrum of different astronomical objects. Balmer series was readily visible when observing an “A” type star. TiO absorptions lines were distinguished by observing an “M” type star. Methane absorption lines were visible by observing Uranus and Neptune. Whereas HI and HeI emission lines were detected by observing a blue hypergiant. In addition, C2 Swan band absorption lines were identified by observing a red giant carbon star. This type of observation is very interesting for public outreach as well as university students, because it shows astrophysical principles for public and students practically and by using low cost equipment.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 438
Author(s):  
Zhiyuan Hu ◽  
Jianyu Chen ◽  
Bin Jiang ◽  
Wenyu Wang

The search for special and rare celestial objects has always played an important role in astronomy. Cataclysmic Variables (CVs) are special and rare binary systems with accretion disks. Most CVs are in the quiescent period, and their spectra have the emission lines of Balmer series, HeI, and HeII. A few CVs in the outburst period have the absorption lines of Balmer series. Owing to the scarcity of numbers, expanding the spectral data of CVs is of positive significance for studying the formation of accretion disks and the evolution of binary star system models. At present, the research for astronomical spectra has entered the era of Big Data. The Large Sky Area Multi-Object Fiber Spectroscopy Telescope (LAMOST) has produced more than tens of millions of spectral data. the latest released LAMOST-DR7 includes 10.6 million low-resolution spectral data in 4926 sky regions, providing ideal data support for searching CV candidates. To process and analyze the massive amounts of spectral data, this study employed the Light Gradient Boosting Machine (LightGBM) algorithm, which is based on the ensemble tree model to automatically conduct the search in LAMOST-DR7. Finally, 225 CV candidates were found and four new CV candidates were verified by SIMBAD and published catalogs. This study also built the Gradient Boosting Decision Tree (GBDT), Adaptive Boosting (AdaBoost), and eXtreme Gradient Boosting (XGBoost) models and used Accuracy, Precision, Recall, the F1-score, and the ROC curve to compare the four models comprehensively. Experimental results showed that LightGBM is more efficient. The search for CVs based on LightGBM not only enriches the existing CV spectral library, but also provides a reference for the data mining of other rare celestial objects in massive spectral data.


2021 ◽  
Vol 5 (1) ◽  
pp. 314-336
Author(s):  
Tristram de Piro ◽  

We clarify some arguments concerning Jefimenko’s equations, as a way of constructing solutions to Maxwell’s equations, for charge and current satisfying the continuity equation. We then isolate a condition on non-radiation in all inertial frames, which is intuitively reasonable for the stability of an atomic system, and prove that the condition is equivalent to the charge and current satisfying certain relations, including the wave equations. Finally, we prove that with these relations, the energy in the electromagnetic field is quantised and displays the properties of the Balmer series.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1922
Author(s):  
Andrei Letunov ◽  
Valery Lisitsa

A new method of line shape calculations of hydrogen-like atoms in magnetized plasmas is presented. This algorithm makes it possible to solve two fundamental problems in the broadening theory: the analytical description of the radiation transition array between excited atomic states and an account of a thermal ion motion effect on the line shapes formation. The solution to the first problem is based on the semiclassical approach to dipole matrix elements calculations and the usage of the specific symmetry properties of the Coulomb field. The second one is considered in terms of the kinetic treatment of the frequency fluctuation model (FFM). As the result, one has a universal description of line shapes under the action of the dynamic of ion’s microfield. The final line shape is obtained by the convolution of the ionic line shape with the Voigt electron Doppler profile. The method is applicable formally for large values of principal quantum numbers. However, the efficiency of the results is demonstrated even for well known first members of the hydrogen Balmer series Dα and Dβ lines. The comparison of obtained results with accurate quantum calculations is presented. The new method may be of interest for investigations of spectral line shapes of hydrogen-like ions presented in different kinds of hot ionized environments with the presence of a magnetic field, including So L and divertor tokamak plasmas.


Author(s):  
Andrei Letunov ◽  
Lisitsa Valery

A new method of line shape calculations of hydrogen-like atoms in magnetized plasmas is presented. This algorithm makes it possible to solve two fundamental problems in the broadening theory: the analytical description of the radiation transition array between excited atomic states and account of a thermal ion motion effect on the line shapes formation. The solution to the first problem is based on the semiclassical approach to dipole matrix elements calculations and the usage of the specific symmetry properises of the Coulomb field. The second one is considered in terms of the kinetic treatment of the frequency fluctuation model (FFM). As the result one has a universal description of line shapes under the action of the dynamic of ion’s microfield. The final line shape is obtained by the convolution of the ionic line shape with the Voigt electron-Doppler profile. The method is applicable formally for large values of principle quantum numbers. However, it is demonstrated the efficiency of the results even for well known first members of the hydrogen Balmer series Dalpha and Dbeta. The comparison of obtained results with accurate quantum calculations is presented. The new method may be of interest for investigations of spectral line shapes of hydrogen-like ions presented in different kinds of hot ionized environments with the presence of a magnetic field, including SoL and divertor tokamak plasmas.


2020 ◽  
Author(s):  
Aurélien Wyttenbach ◽  
Paul Mollière ◽  
David Ehrenreich ◽  
Heather Cegla ◽  
Vincent Bourrier ◽  
...  

<p>Atmospheric escape rate is a key parameter to measure in order to understand the evolution of exoplanets. In this presentation, we will show that the Balmer series, observed with high-resolution transmission spectroscopy, is a precise probe to measure exoplanet evaporation, especially for ultra hot Jupiters orbiting early-type star. These hot gaseous giant exoplanets (such as KELT-9 b) are presumed to have an atmosphere dominated by neutral and ionized atomic species. In particular, hydrogen Balmer lines have been detected in some of their upper atmospheres, suggesting that hydrogen is filling the planetary Roche lobe and escaping from these planets. Here, we will present new significant absorptions of the Balmer series in the KELT-9b atmosphere obtained with HARPS-N. The precise line shapes of the Hα, Hβ, and Hγ absorptions allow us to put constraints on the thermospheric temperature. Moreover, the mass loss rate, and the excited hydrogen population of KELT-9 b are also constrained, thanks to a retrieval analysis performed with a new atmospheric model (the PAWN model). We retrieved a thermospheric temperature of T = 13 200+800-720 K and a mass loss rate of log10(MLR) = 10^(12.8+-0.3) g/s when the atmosphere was assumed to be in hydrodynamical expansion and in local thermodynamic equilibrium (LTE). Since the thermospheres of hot Jupiters are not expected to be in LTE, we explored atmospheric structures with non-Boltzmann equilibrium for the population of the excited hydrogen. We do not find strong statistical evidence in favor of a departure from LTE. However, our non-LTE scenario suggests that a departure from the Boltzmann equilibrium may not be sufficient to explain the retrieved low number densities of the excited hydrogen. In non-LTE, Saha equilibrium departure via photo-ionization, is also likely to be necessary to explain the data.</p>


2020 ◽  
Vol 638 ◽  
pp. A87 ◽  
Author(s):  
A. Wyttenbach ◽  
P. Mollière ◽  
D. Ehrenreich ◽  
H. M. Cegla ◽  
V. Bourrier ◽  
...  

KELT-9 b, the hottest known exoplanet, with Teq ~ 4400 K, is the archetype of a new planet class known as ultra-hot Jupiters. These exoplanets are presumed to have an atmosphere dominated by neutral and ionized atomic species. In particular, Hα and Hβ Balmer lines have been detected in the KELT-9 b upper atmosphere, suggesting that hydrogen is filling the planetary Roche lobe and escaping from the planet. In this work, we detected δ Scuti-type stellar pulsation (with a period Ppuls = 7.54 ± 0.12 h) and studied the Rossiter-McLaughlin effect (finding a spin-orbit angle λ = −85.01° ± 0.23°) prior to focussing on the Balmer lines (Hα to Hζ) in the optical transmission spectrum of KELT-9 b. Our HARPS-N data show significant absorption for Hα to Hδ. The precise line shapes of the Hα, Hβ, and Hγ absorptions allow us to put constraints on the thermospheric temperature. Moreover, the mass loss rate, and the excited hydrogen population of KELT-9 b are also constrained, thanks to a retrieval analysis performed with a new atmospheric model. We retrieved a thermospheric temperature of T = 13 200−720+800 K and a mass loss rate of Ṁ = 1012.8±0.3 g s−1 when the atmosphere was assumed to be in hydrodynamical expansion and in local thermodynamic equilibrium (LTE). Since the thermospheres of hot Jupiters are not expected to be in LTE, we explored atmospheric structures with non-Boltzmann equilibrium for the population of the excited hydrogen. We do not find strong statistical evidence in favor of a departure from LTE. However, our non-LTE scenario suggests that a departure from the Boltzmann equilibrium may not be sufficient to explain the retrieved low number densities of the excited hydrogen. In non-LTE, Saha equilibrium departure via photo-ionization, is also likely to be necessary to explain the data.


2020 ◽  
Vol 495 (1) ◽  
pp. 637-649 ◽  
Author(s):  
Z N Khangale ◽  
P A Woudt ◽  
S B Potter ◽  
B Warner ◽  
D Kilkenny ◽  
...  

ABSTRACT We present phase-resolved optical spectroscopy of the eclipsing nova-like cataclysmic variable EC 21178−5417 obtained between 2002 and 2013. The average spectrum of EC 21178−5417 shows broad double-peaked emission lines from He ii 4686 Å (strongest feature) and the Balmer series. The high-excitation feature, C iii/N iii at 4640–4650 Å, is also present and appears broad in emission. A number of other lines, mostly He i, are clearly present in absorption and/or emission. The average spectrum of EC 21178−5417 taken at different months and years shows variability in spectral features, especially in the Balmer lines beyond Hγ, from pure line emission, mixed line absorption, and emission to pure absorption lines. Doppler maps of the He ii 4686 Å emission reveal the presence of a highly inclined asymmetric accretion disc and a two spiral arm-like structure, whereas that of the Balmer lines (Hα and Hβ) reveal a more circular accretion disc. There is no evidence of a bright-spot in the Doppler maps of EC 21178−5417 and no emission from the secondary star is seen in the tomograms of the He ii 4686 Å and Balmer lines. Generally, the emission in EC 21178−5417 is dominated by emission from the accretion disc. We conclude that EC 21178−5417 is a member of the RW Tri or UX UMa subtype of nova-like variables based on these results and because it shows different spectral characteristics at different dates. This spectral behaviour suggests that EC 21178−5417 undergoes distinct variations in mass transfer rate on the observed time-scales of months and years.


Sign in / Sign up

Export Citation Format

Share Document