On Schubert varieties in the flag manifold of Sl(n,?)

1987 ◽  
Vol 276 (2) ◽  
pp. 205-224 ◽  
Author(s):  
Kevin M. Ryan
2021 ◽  
Vol 9 ◽  
Author(s):  
Syu Kato

Abstract We exhibit basic algebro-geometric results on the formal model of semi-infinite flag varieties and its Schubert varieties over an algebraically closed field ${\mathbb K}$ of characteristic $\neq 2$ from scratch. We show that the formal model of a semi-infinite flag variety admits a unique nice (ind-)scheme structure, its projective coordinate ring has a $\mathbb {Z}$ -model and it admits a Frobenius splitting compatible with the boundaries and opposite cells in positive characteristic. This establishes the normality of the Schubert varieties of the quasi-map space with a fixed degree (instead of their limits proved in [K, Math. Ann. 371 no.2 (2018)]) when $\mathsf {char}\, {\mathbb K} =0$ or $\gg 0$ , and the higher-cohomology vanishing of their nef line bundles in arbitrary characteristic $\neq 2$ . Some particular cases of these results play crucial roles in our proof [47] of a conjecture by Lam, Li, Mihalcea and Shimozono [60] that describes an isomorphism between affine and quantum K-groups of a flag manifold.


Author(s):  
Allen Knutson ◽  
Thomas Lam ◽  
David E Speyer

Abstract.While the projections of Schubert varieties in a full generalized flag manifold


2018 ◽  
Vol 2020 (17) ◽  
pp. 5401-5427 ◽  
Author(s):  
Syu Kato

Abstract We explain that the Plücker relations provide the defining equations of the thick flag manifold associated to a Kac–Moody algebra. This naturally transplants the result of Kumar–Mathieu–Schwede about the Frobenius splitting of thin flag varieties to the thick case. As a consequence, we provide a description of the space of global sections of a line bundle of a thick Schubert variety as conjectured in Kashiwara–Shimozono [13]. This also yields the existence of a compatible basis of thick Demazure modules and the projective normality of the thick Schubert varieties.


2021 ◽  
Author(s):  
Fabio Strazzeri ◽  
Carme Torras

AbstractForty years ago the notion of configuration space (C-space) revolutionised robot motion planning for rigid and articulated objects. Despite great progress, handling deformable materials has remained elusive because of their infinite-dimensional shape-state space. Finding low-complexity representations has become a pressing research goal. This work tries to make a tiny step in this direction by proposing a state representation for textiles relying on the C-space of some distinctive points. A stratification of the configuration space for n points in the cloth is derived from that of the flag manifold, and topological techniques to determine adjacencies in manipulation-centred state graphs are developed. Their algorithmic implementation permits obtaining cloth state–space representations of different granularities and tailored to particular purposes. An example of their usage to distinguish between cloth states having different manipulation affordances is provided. Suggestions on how the proposed state graphs can serve as a common ground to link the perception, planning and manipulation of textiles are also made.


Author(s):  
Francesca Cioffi ◽  
Davide Franco ◽  
Carmine Sessa

AbstractLet $$\mathcal S$$ S be a single condition Schubert variety with an arbitrary number of strata. Recently, an explicit description of the summands involved in the decomposition theorem applied to such a variety has been obtained in a paper of the second author. Starting from this result, we provide an explicit description of the Poincaré polynomial of the intersection cohomology of $$\mathcal S$$ S by means of the Poincaré polynomials of its strata, obtaining interesting polynomial identities relating Poincaré polynomials of several Grassmannians, both by a local and by a global point of view. We also present a symbolic study of a particular case of these identities.


Author(s):  
Judit Abardia-Evéquoz ◽  
Andreas Bernig

AbstractWe show the existence of additive kinematic formulas for general flag area measures, which generalizes a recent result by Wannerer. Building on previous work by the second named author, we introduce an algebraic framework to compute these formulas explicitly. This is carried out in detail in the case of the incomplete flag manifold consisting of all $$(p+1)$$ ( p + 1 ) -planes containing a unit vector.


Author(s):  
Dinakar Muthiah ◽  
Alex Weekes ◽  
Oded Yacobi

AbstractIn their study of local models of Shimura varieties for totally ramified extensions, Pappas and Rapoport posed a conjecture about the reducedness of a certain subscheme of {n\times n} matrices. We give a positive answer to their conjecture in full generality. Our main ideas follow naturally from two of our previous works. The first is our proof of a conjecture of Kreiman, Lakshmibai, Magyar, and Weyman on the equations defining type A affine Grassmannians. The second is the work of the first two authors and Kamnitzer on affine Grassmannian slices and their reduced scheme structure. We also present a version of our argument that is almost completely elementary: the only non-elementary ingredient is the Frobenius splitting of Schubert varieties.


2002 ◽  
Vol 33 (4) ◽  
pp. 507-517 ◽  
Author(s):  
Xu an Zhao ◽  
Haibao Duan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document