Kinetics of three-dimensional rupture of structural elements under long-term loading

1984 ◽  
Vol 16 (4) ◽  
pp. 457-462
Author(s):  
A. E. Kalinnikov ◽  
M. G. Kurguzkin ◽  
A. V. Vakhrushev
Author(s):  
C.L. Woodcock

Despite the potential of the technique, electron tomography has yet to be widely used by biologists. This is in part related to the rather daunting list of equipment and expertise that are required. Thanks to continuing advances in theory and instrumentation, tomography is now more feasible for the non-specialist. One barrier that has essentially disappeared is the expense of computational resources. In view of this progress, it is time to give more attention to practical issues that need to be considered when embarking on a tomographic project. The following recommendations and comments are derived from experience gained during two long-term collaborative projects.Tomographic reconstruction results in a three dimensional description of an individual EM specimen, most commonly a section, and is therefore applicable to problems in which ultrastructural details within the thickness of the specimen are obscured in single micrographs. Information that can be recovered using tomography includes the 3D shape of particles, and the arrangement and dispostion of overlapping fibrous and membranous structures.


2003 ◽  
Vol 70 ◽  
pp. 201-212 ◽  
Author(s):  
Hideaki Nagase ◽  
Keith Brew

The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs), enzymes that play central roles in the degradation of extracellular matrix components. The balance between MMPs and TIMPs is important in the maintenance of tissues, and its disruption affects tissue homoeostasis. Four related TIMPs (TIMP-1 to TIMP-4) can each form a complex with MMPs in a 1:1 stoichiometry with high affinity, but their inhibitory activities towards different MMPs are not particularly selective. The three-dimensional structures of TIMP-MMP complexes reveal that TIMPs have an extended ridge structure that slots into the active site of MMPs. Mutation of three separate residues in the ridge, at positions 2, 4 and 68 in the amino acid sequence of the N-terminal inhibitory domain of TIMP-1 (N-TIMP-1), separately and in combination has produced N-TIMP-1 variants with higher binding affinity and specificity for individual MMPs. TIMP-3 is unique in that it inhibits not only MMPs, but also several ADAM (a disintegrin and metalloproteinase) and ADAMTS (ADAM with thrombospondin motifs) metalloproteinases. Inhibition of the latter groups of metalloproteinases, as exemplified with ADAMTS-4 (aggrecanase 1), requires additional structural elements in TIMP-3 that have not yet been identified. Knowledge of the structural basis of the inhibitory action of TIMPs will facilitate the design of selective TIMP variants for investigating the biological roles of specific MMPs and for developing therapeutic interventions for MMP-associated diseases.


1977 ◽  
Vol 16 (01) ◽  
pp. 30-35 ◽  
Author(s):  
N. Agha ◽  
R. B. R. Persson

SummaryGelchromatography column scanning has been used to study the fractions of 99mTc-pertechnetate, 99mTcchelate and reduced hydrolyzed 99mTc in preparations of 99mTc-EDTA(Sn) and 99mTc-DTPA(Sn). The labelling yield of 99mTc-EDTA(Sn) chelate was as high as 90—95% when 100 μmol EDTA · H4 and 0.5 (Amol SnCl2 was incubated with 10 ml 99mTceluate for 30—60 min at room temperature. The study of the influence of the pH-value on the fraction of 99mTc-EDTA shows that pH 2.8—2.9 gave the best labelling yield. In a comparative study of the labelling kinetics of 99mTc-EDTA(Sn) and 99mTc- DTPA(Sn) at different temperatures (7, 22 and 37°C), no significant influence on the reduction step was found. The rate constant for complex formation, however, increased more rapidly with increased temperature for 99mTc-DTPA(Sn). At room temperature only a few minutes was required to achieve a high labelling yield with 99mTc-DTPA(Sn) whereas about 60 min was required for 99mTc-EDTA(Sn). Comparative biokinetic studies in rabbits showed that the maximum activity in kidneys is achieved after 12 min with 99mTc-EDTA(Sn) but already after 6 min with 99mTc-DTPA(Sn). The long-term disappearance of 99mTc-DTPA(Sn) from the kidneys is about five times faster than that for 99mTc-EDTA(Sn).


2020 ◽  
Vol 36 (06) ◽  
pp. 696-702
Author(s):  
Nolan B. Seim ◽  
Enver Ozer ◽  
Sasha Valentin ◽  
Amit Agrawal ◽  
Mead VanPutten ◽  
...  

AbstractResection and reconstruction of midface involve complex ablative and reconstructive tools in head and oncology and maxillofacial prosthodontics. This region is extraordinarily important for long-term aesthetic and functional performance. From a reconstructive standpoint, this region has always been known to present challenges to a reconstructive surgeon due to the complex three-dimensional anatomy, the variable defects created, combination of the medical and dental functionalities, and the distance from reliable donor vessels for free tissue transfer. Another challenge one faces is the unique features of each individual resection defect as well as individual patient factors making each preoperative planning session and reconstruction unique. Understanding the long-term effects on speech, swallowing, and vision, one should routinely utilize a multidisciplinary approach to resection and reconstruction, including head and neck reconstructive surgeons, prosthodontists, speech language pathologists, oculoplastic surgeons, dentists, and/or craniofacial teams as indicated and with each practice pattern. With this in mind, we present our planning and reconstructive algorithm in midface reconstruction, including a dedicated focus on dental rehabilitation via custom presurgical planning.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1809
Author(s):  
Zhanzhi Liu ◽  
Ying Li ◽  
Jing Wu ◽  
Sheng Chen

d-mannose has exhibited excellent physiological properties in the food, pharmaceutical, and feed industries. Therefore, emerging attention has been applied to enzymatic production of d-mannose due to its advantage over chemical synthesis. The gene age of N-acetyl-d-glucosamine 2-epimerase family epimerase/isomerase (AGEase) derived from Pseudomonas geniculata was amplified, and the recombinant P. geniculata AGEase was characterized. The optimal temperature and pH of P. geniculata AGEase were 60 °C and 7.5, respectively. The Km, kcat, and kcat/Km of P. geniculata AGEase for d-mannose were 49.2 ± 8.5 mM, 476.3 ± 4.0 s−1, and 9.7 ± 0.5 s−1·mM−1, respectively. The recombinant P. geniculata AGEase was classified into the YihS enzyme subfamily in the AGE enzyme family by analyzing its substrate specificity and active center of the three-dimensional (3D) structure. Further studies on the kinetics of different substrates showed that the P. geniculata AGEase belongs to the d-mannose isomerase of the YihS enzyme. The P. geniculata AGEase catalyzed the synthesis of d-mannose with d-fructose as a substrate, and the conversion rate was as high as 39.3% with the d-mannose yield of 78.6 g·L−1 under optimal reaction conditions of 200 g·L−1d-fructose and 2.5 U·mL−1P. geniculata AGEase. This novel P. geniculata AGEase has potential applications in the industrial production of d-mannose.


Author(s):  
Tingting Xia ◽  
Chengfei Xu ◽  
Pengfei Dai ◽  
Xiaoyun Li ◽  
Riming Lin ◽  
...  

Three-dimensional (3D) conductive polymers are promising conductive matrices for electrode materials toward electrochemical energy storage. However, their fragile nature and weak binding forces with active materials could not guarantee long-term...


Sign in / Sign up

Export Citation Format

Share Document