Determination of the compliance of conical shells under antisymmetric loading

1978 ◽  
Vol 10 (11) ◽  
pp. 1292-1297
Author(s):  
N. I. Koterov ◽  
N. P. Znamenskii

Author(s):  
Y.O. Bessmertnyi ◽  
◽  
V.L. Krasovsky ◽  

The process of deformation and buckling of shallow thin-walled elastic conical shells has been investigated for the case of significantly non-uniform stress-strain state due to the action of wind load based on improved model of pressure application schema to the surface of shallow shell and for hinged hedge of border. An improved model of wind load was based on data presented in terms [5, 6] and was a logical continuation of previous investigation of wind action on shallow conical shells based on model of first approach [3]. Deformation and buckling process investigation has been carried out using software ANSYS which effectivity was approved by the fact of being used by NASA for its aerospace projects. A model of shallow conical shell has been made using four-corner finite element SHELL 281 with 8 nodes that let us obtain not only symmetrical relatively to the axis of rotation buckling form but an asymmetrical too. Two types of computation have been made during numerical modeling – linear bifurcation computation with determination of linear pressure qcr value and corresponding to it buckling form, and computation of geometrically non-linear problem of deformation with determination of limit pressure qlim and corresponding buckling form. Obtained buckling forms have been compared to the deformed shape of shell surface when aerodynamic computations have been carried out using software ANSYS. An estimation analysis has been made for case of application of improved model of wind load in comparison to the previous investigation according to the values of baring capacity and buckling shape coherence during resolution of static tasks and comparison to the results of aerodynamic solution. An analysis of base parameter influence has been carried out for the model of first approach and current improved model according to the bearing capacity value and local extremums on schema of pressure intensity distribution of wind load. Specific moments of deformation process computations based on improved model using environment ANSYS have been mentioned and of further analysis on the basis of improved model with it specifics have been given too.



2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mohammad Zamani Nejad ◽  
Mehdi Jabbari ◽  
Mehdi Ghannad

Using disk form multilayers, an elastic analysis is presented for determination of displacements and stresses of rotating thick truncated conical shells. The cone is divided into disk layers form with their thickness corresponding to the thickness of the cone. Due to the existence of shear stress in the truncated cone, the equations governing disk layers are obtained based on first shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the truncated cone is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. The results obtained have been compared with those obtained through the analytical solution and the numerical solution.





2014 ◽  
Vol 74 ◽  
pp. 292-299 ◽  
Author(s):  
Tohid Ghanbari Ghazijahani ◽  
Tadeh Zirakian


1963 ◽  
Vol 30 (1) ◽  
pp. 144-146 ◽  
Author(s):  
F. J. Schroeder ◽  
E. T. Kusterer


1966 ◽  
Vol 25 ◽  
pp. 93-97
Author(s):  
Richard Woolley

It is now possible to determine proper motions of high-velocity objects in such a way as to obtain with some accuracy the velocity vector relevant to the Sun. If a potential field of the Galaxy is assumed, one can compute an actual orbit. A determination of the velocity of the globular clusterωCentauri has recently been completed at Greenwich, and it is found that the orbit is strongly retrograde in the Galaxy. Similar calculations may be made, though with less certainty, in the case of RR Lyrae variable stars.



1999 ◽  
Vol 190 ◽  
pp. 549-554
Author(s):  
Nino Panagia

Using the new reductions of the IUE light curves by Sonneborn et al. (1997) and an extensive set of HST images of SN 1987A we have repeated and improved Panagia et al. (1991) analysis to obtain a better determination of the distance to the supernova. In this way we have derived an absolute size of the ringRabs= (6.23 ± 0.08) x 1017cm and an angular sizeR″ = 808 ± 17 mas, which give a distance to the supernovad(SN1987A) = 51.4 ± 1.2 kpc and a distance modulusm–M(SN1987A) = 18.55 ± 0.05. Allowing for a displacement of SN 1987A position relative to the LMC center, the distance to the barycenter of the Large Magellanic Cloud is also estimated to bed(LMC) = 52.0±1.3 kpc, which corresponds to a distance modulus ofm–M(LMC) = 18.58±0.05.



1961 ◽  
Vol 13 ◽  
pp. 29-41
Author(s):  
Wm. Markowitz
Keyword(s):  

A symposium on the future of the International Latitude Service (I. L. S.) is to be held in Helsinki in July 1960. My report for the symposium consists of two parts. Part I, denoded (Mk I) was published [1] earlier in 1960 under the title “Latitude and Longitude, and the Secular Motion of the Pole”. Part II is the present paper, denoded (Mk II).



Sign in / Sign up

Export Citation Format

Share Document