Conformally covariant field equations I. first-order equations with non-vanishing mass

1975 ◽  
Vol 25 (2) ◽  
pp. 123-149 ◽  
Author(s):  
R. Kotecký ◽  
J. Niederle
1977 ◽  
Vol 12 (2) ◽  
pp. 237-249 ◽  
Author(s):  
R. Kotecký ◽  
J. Niederle

1972 ◽  
Vol 50 (18) ◽  
pp. 2100-2104 ◽  
Author(s):  
Mark S. Drew

Conformally covariant equations for free spinor fields are determined uniquely by carrying out a descent to Minkowski space from the most general first-order rotationally covariant spinor equations in a six-dimensional flat space. It is found that the introduction of the concept of the "conformally invariant mass" is not possible for spinor fields even if the fields are defined not only on the null hyperquadric but over the entire manifold of coordinates in six-dimensional space.


1989 ◽  
Vol 139 (1-2) ◽  
pp. 21-26 ◽  
Author(s):  
Michael Sué ◽  
Eckehard W. Mielke

2002 ◽  
Vol 17 (20) ◽  
pp. 2769-2769
Author(s):  
B. C. NOLAN

We revisit the problem of the development of singularities in the gravitational collapse of an inhomogeneous dust sphere. As shown by Yodzis et al1, naked singularities may occur at finite radius where shells of dust cross one another. These singularities are gravitationally weak 2, and it has been claimed that at these singularities, the metric may be written in continuous form 2, with locally L∞ connection coefficients 3. We correct these claims, and show how the field equations may be reformulated as a first order, quasi-linear, non-conservative, non-strictly hyperbolic system. We discuss existence and uniqueness of generalized solutions of this system using bounded functions of bounded variation (BV) 4, where the product of a BV function and the derivative of another BV function may be interpreted as a locally finite measure. The solutions obtained provide a dynamical extension to the future of the singularity.


2018 ◽  
Vol 33 (03) ◽  
pp. 1850017 ◽  
Author(s):  
B. Hamil

In this paper, we study the influence of the noncommutativity on the pairs creation of neutral particle–antiparticle in (1 + 2)d. Using the Seiberg–Witten maps, the modified Euler–Lagrange field equations up to first-order in the noncommutativity, parameter [Formula: see text] is obtained and the Nikishov method based on Bogoliubov transformation is applied to calculate the density number of created neutral fermions. It is shown that the noncommutativity amplifies the density number N. In addition, when [Formula: see text], we obtain the known results corresponding to the undeformed quantum fields.


2020 ◽  
Vol 404 ◽  
pp. 109088 ◽  
Author(s):  
Michael Dumbser ◽  
Francesco Fambri ◽  
Elena Gaburro ◽  
Anne Reinarz

2002 ◽  
Vol 29 (12) ◽  
pp. 687-699 ◽  
Author(s):  
A. Echeverría-Enríquez ◽  
M. C. Muñoz-Lecanda ◽  
N. Román-Roy

We give a geometric formulation of the field equations in the Lagrangian and Hamiltonian formalisms of classical field theories (of first order) in terms of multivector fields. This formulation enables us to discuss the existence and nonuniqueness of solutions of these equations, as well as their integrability.


1969 ◽  
Vol 47 (21) ◽  
pp. 2401-2404 ◽  
Author(s):  
S. J. Wilson

An exact solution of the field equations of general relativity is obtained for a static, spherically symmetric distribution of charge and mass which can be matched with the Reissner–Nordström metric at the boundary. The self-energy contributions to the total gravitational mass are computed retaining only the first order terms in the gravitational constant.


2013 ◽  
Vol 10 (06) ◽  
pp. 1350023 ◽  
Author(s):  
ELISABETTA DI GREZIA ◽  
GIAMPIERO ESPOSITO ◽  
MARCO FIGLIOLIA ◽  
PATRIZIA VITALE

In this paper the Seiberg–Witten map is first analyzed for non-commutative Yang–Mills theories with the related methods, developed in the literature, for its explicit construction, that hold for any gauge group. These are exploited to write down the second-order Seiberg–Witten map for pure gravity with a constant non-commutativity tensor. In the analysis of pure gravity when the classical space–time solves the vacuum Einstein equations, we find for three distinct vacuum solutions that the corresponding non-commutative field equations do not have solution to first order in non-commutativity, when the Seiberg–Witten map is eventually inserted. In the attempt of understanding whether or not this is a peculiar property of gravity, in the second part of the paper, the Seiberg–Witten map is considered in the simpler case of Maxwell theory in vacuum in the absence of charges and currents. Once more, no obvious solution of the non-commutative field equations is found, unless the electromagnetic potential depends in a very special way on the wave vector.


Sign in / Sign up

Export Citation Format

Share Document