Exact solution of a static charged sphere in general relativity

1969 ◽  
Vol 47 (21) ◽  
pp. 2401-2404 ◽  
Author(s):  
S. J. Wilson

An exact solution of the field equations of general relativity is obtained for a static, spherically symmetric distribution of charge and mass which can be matched with the Reissner–Nordström metric at the boundary. The self-energy contributions to the total gravitational mass are computed retaining only the first order terms in the gravitational constant.

1976 ◽  
Vol 29 (2) ◽  
pp. 113 ◽  
Author(s):  
N Chakravarty ◽  
SB Dutta Choudhury ◽  
A Banerjee

A general method is described by which exact solutions of Einstein's field equations are obtained for a nonstatic spherically symmetric distribution of a perfect fluid. In addition to the previously known solutions which are systematically derived, a new set of exact solutions is found, and the dynamical behaviour of the corresponding models is briefly discussed.


1996 ◽  
Vol 11 (30) ◽  
pp. 2409-2415 ◽  
Author(s):  
FERNANDO KOKUBUN

We analyze the presence of a scalar field around a spherically symmetric distribution of an ordinary matter, obtaining an exact solution for a given scalar field distribution.


2008 ◽  
Vol 23 (38) ◽  
pp. 3247-3263 ◽  
Author(s):  
J. OVALLE

In the context of the braneworld, a method to find consistent solutions to Einstein's field equations in the interior of a spherically symmetric, static and non-uniform stellar distribution with Weyl stresses is developed. This method, based on the fact that any braneworld stellar solution must have the general relativity solution as a limit, produces a constraint which reduces the degrees of freedom on the brane. Hence the nonlocality and non-closure of the braneworld equations can be overcome. The constraint found is physically interpreted as a necessary condition to regain general relativity, and a particular solution for it is used to find an exact and physically acceptable analytical internal solution to no-uniform stellar distributions on the brane. It is shown that such an exact solution is possible due to the fact that bulk corrections to pressure, density and a metric component are a null source of anisotropic effects on the brane. A conjecture is proposed regarding the possibility of finding physically relevant exact solutions to non-uniform stellar distributions on the brane.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 348
Author(s):  
Merced Montesinos ◽  
Diego Gonzalez ◽  
Rodrigo Romero ◽  
Mariano Celada

We report off-shell Noether currents obtained from off-shell Noether potentials for first-order general relativity described by n-dimensional Palatini and Holst Lagrangians including the cosmological constant. These off-shell currents and potentials are achieved by using the corresponding Lagrangian and the off-shell Noether identities satisfied by diffeomorphisms generated by arbitrary vector fields, local SO(n) or SO(n−1,1) transformations, ‘improved diffeomorphisms’, and the ‘generalization of local translations’ of the orthonormal frame and the connection. A remarkable aspect of our approach is that we do not use Noether’s theorem in its direct form. By construction, the currents are off-shell conserved and lead naturally to the definition of off-shell Noether charges. We also study what we call the ‘half off-shell’ case for both Palatini and Holst Lagrangians. In particular, we find that the resulting diffeomorphism and local SO(3,1) or SO(4) off-shell Noether currents and potentials for the Holst Lagrangian generically depend on the Immirzi parameter, which holds even in the ‘half off-shell’ and on-shell cases. We also study Killing vector fields in the ‘half off-shell’ and on-shell cases. The current theoretical framework is illustrated for the ‘half off-shell’ case in static spherically symmetric and Friedmann–Lemaitre–Robertson–Walker spacetimes in four dimensions.


1963 ◽  
Vol 59 (4) ◽  
pp. 739-741 ◽  
Author(s):  
J. Hyde

It was shown by Birkhoff ((1), p. 253) that every spherically symmetric solution of the field equations of general relativity for empty space,may be reduced, by suitable coordinate transformations, to the static Schwarzschild form:where m is a constant. This result is known as Birkhoff's theorem and excludes the possibility of spherically symmetric gravitational radiation. Different proofs of the theorem have been given by Eiesland(2), Tolman(3), and Bonnor ((4), p. 167).


2011 ◽  
Vol 20 (11) ◽  
pp. 2239-2252 ◽  
Author(s):  
M. SHARIF ◽  
H. RIZWANA KAUSAR

We consider the modified f(R) theory of gravity whose higher-order curvature terms are interpreted as a gravitational fluid or dark source. The gravitational collapse of a spherically symmetric star, made up of locally anisotropic viscous fluid, is studied under the general influence of the curvature fluid. Dynamical equations and junction conditions are modified in the context of f(R) dark energy and by taking into account the expansionfree evolution of the self-gravitating fluid. As a particular example, the Skripkin model is investigated which corresponds to isotropic pressure with constant energy density. The results are compared with corresponding results in General Relativity.


1991 ◽  
Vol 106 (3) ◽  
pp. 273-289 ◽  
Author(s):  
M. Mattes ◽  
M. Sorg

2012 ◽  
Vol 2012 ◽  
pp. 1-4
Author(s):  
L. L. Williams

The unification of classical electrodynamics and general relativity within the context of five-dimensional general relativity (Kaluza, 1921, and Thiry, 1948) contains a scalar field which may be identified with the gravitational constant, G. The field equations of this theory are solved under conditions of the Robertson-Walker metric for flat space, for a radiation-dominated universe—a model appropriate for the early history of our universe. This leads to a cosmology wherein G is inversely proportional to the Robertson-Walker scale factor. This result is discussed in the context of the Dirac large number hypothesis and in the context of an expression for G in terms of atomic constants.


1995 ◽  
Vol 48 (4) ◽  
pp. 635 ◽  
Author(s):  
LK Patel ◽  
NP Mehta

In this paper the field equations of general relativity are solved to obtain an exact solution for a static anisotropic fluid sphere. The solution is free from singularity and satisfies the necessary physical requirements. The physical 3-space of the solution is pseudo-spheroidal. The solution is matched at the boundary with the Schwarzschild exterior solution. Numerical estimates of various physical parameters are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document