Alteration of the basement membrane in human thyroid diseases: An immunohistochemical study of type IV collagen, laminin and heparan sulphate proteoglycan

1993 ◽  
Vol 423 (6) ◽  
pp. 417-424 ◽  
Author(s):  
Ryohei Katoh ◽  
Akira Muramatsu ◽  
Akira Kawaoi ◽  
Akira Komiyama ◽  
Koichi Suzuki ◽  
...  

Development ◽  
1987 ◽  
Vol 99 (4) ◽  
pp. 509-519
Author(s):  
K.S. O'Shea

The distribution of basement membrane and extracellular matrix components laminin, fibronectin, type IV collagen and heparan sulphate proteoglycan was examined during posterior neuropore closure and secondary neurulation in the mouse embryo. During posterior neuropore closure, these components were densely deposited in basement membranes of neuroepithelium, blood vessels, gut and notochord; although deposition was sparse in the midline of the regressing primitive streak. During secondary neurulation, mesenchymal cells formed an initial aggregate near the dorsal surface, which canalized and merged with the anterior neuroepithelium. With aggregation, fibronectin and heparan sulphate proteoglycan were first detected at the base of a 3- to 4-layer zone of radially organized cells. With formation of a lumen within the aggregate, laminin and type IV collagen were also deposited in the forming basement membrane. During both posterior neuropore closure and secondary neurulation, fibronectin and heparan sulphate proteoglycan were associated with the most caudal portion of the neuroepithelium, the region where newly formed epithelium merges with the consolidated neuroepithelium. In regions of neural crest migration, the deposition of basement membrane components was altered, lacking laminin and type IV collagen, with increased deposition of fibronectin and heparan sulphate proteoglycan.



1984 ◽  
Vol 99 (3) ◽  
pp. 861-869 ◽  
Author(s):  
J G Heathcote ◽  
R R Bruns ◽  
R W Orkin

Rabbit lens epithelial cells display a similar "cobblestone" morphology and produce the same complement of sulphated macromolecules (also see Heathcote, J.G., and R.W. Orkin, 1984, J. Cell Biol., 99:852-860) whether grown on plastic or glass, dried films of gelatin or type IV collagen with laminin, or on gels of type I collagen. There was no evidence of basement membrane formation by these cells when they were grown on plastic, glass, or dried films. In contrast, cultures that had been grown on gels deposited a discrete basement membrane that followed the contours of the basal surfaces of the cells and in addition, they secreted amorphous basement membrane-like material that diffused into the interstices of the gel and associated with the collagen fibrils of the gel. A significant proportion (approximately 70%) of the heparan sulphate proteoglycan fraction that was secreted into the culture medium (fraction MI) when the cells were grown on plastic became associated with the cell-gel layer in the gel cultures. Further, when basement membrane was isolated by detergent extraction, greater than 90% of the 35S-labeled material present was in this heparan sulphate proteoglycan.









1989 ◽  
Vol 264 (2) ◽  
pp. 457-465 ◽  
Author(s):  
L P W J van den Heuvel ◽  
J van den Born ◽  
T J A M van de Velden ◽  
J H Veerkamp ◽  
L A H Monnens ◽  
...  

Heparan sulphate proteoglycan was solubilized from human glomerular basement membranes by guanidine extraction and purified by ion-exchange chromatography and gel filtration. The yield of proteoglycan was approx. 2 mg/g of basement membrane. The glycoconjugate had an apparent molecular mass of 200-400 kDa and consisted of about 75% protein and 25% heparan sulphate. The amino acid composition was characterized by a high content of glycine, proline, alanine and glutamic acid. Hydrolysis with trifluoromethanesulphonic acid yielded core proteins of 160 and 110 kDa (and minor bands of 90 and 60 kDa). Alkaline NaBH4 treatment of the proteoglycan released heparan sulphate chains with an average molecular mass of 18 kDa. HNO2 oxidation of these chains yielded oligosaccharides of about 5 kDa, whereas heparitinase digestion resulted in a more complete degradation. The data suggest a clustering of N-sulphate groups in the peripheral regions of the glycosaminoglycan chains. A polyclonal antiserum raised against the intact proteoglycan showed reactivity against the core protein. It stained all basement membranes in an intense linear fashion in immunohistochemical studies on frozen kidney sections from man and various mammalian species.





Sign in / Sign up

Export Citation Format

Share Document