scholarly journals Development of an Enzyme Immunoassay Specific for a Core Protein Epitope of a Novel Small Basement Membrane Associated Heparan Sulphate Proteoglycan from Human Kidney

Author(s):  
Georg Stöcker ◽  
Elmar Stickeler ◽  
Silke Switalla ◽  
Dagmar-Christiane Fischer ◽  
Helmut Greiling ◽  
...  
1989 ◽  
Vol 264 (2) ◽  
pp. 457-465 ◽  
Author(s):  
L P W J van den Heuvel ◽  
J van den Born ◽  
T J A M van de Velden ◽  
J H Veerkamp ◽  
L A H Monnens ◽  
...  

Heparan sulphate proteoglycan was solubilized from human glomerular basement membranes by guanidine extraction and purified by ion-exchange chromatography and gel filtration. The yield of proteoglycan was approx. 2 mg/g of basement membrane. The glycoconjugate had an apparent molecular mass of 200-400 kDa and consisted of about 75% protein and 25% heparan sulphate. The amino acid composition was characterized by a high content of glycine, proline, alanine and glutamic acid. Hydrolysis with trifluoromethanesulphonic acid yielded core proteins of 160 and 110 kDa (and minor bands of 90 and 60 kDa). Alkaline NaBH4 treatment of the proteoglycan released heparan sulphate chains with an average molecular mass of 18 kDa. HNO2 oxidation of these chains yielded oligosaccharides of about 5 kDa, whereas heparitinase digestion resulted in a more complete degradation. The data suggest a clustering of N-sulphate groups in the peripheral regions of the glycosaminoglycan chains. A polyclonal antiserum raised against the intact proteoglycan showed reactivity against the core protein. It stained all basement membranes in an intense linear fashion in immunohistochemical studies on frozen kidney sections from man and various mammalian species.


Development ◽  
1987 ◽  
Vol 99 (4) ◽  
pp. 509-519
Author(s):  
K.S. O'Shea

The distribution of basement membrane and extracellular matrix components laminin, fibronectin, type IV collagen and heparan sulphate proteoglycan was examined during posterior neuropore closure and secondary neurulation in the mouse embryo. During posterior neuropore closure, these components were densely deposited in basement membranes of neuroepithelium, blood vessels, gut and notochord; although deposition was sparse in the midline of the regressing primitive streak. During secondary neurulation, mesenchymal cells formed an initial aggregate near the dorsal surface, which canalized and merged with the anterior neuroepithelium. With aggregation, fibronectin and heparan sulphate proteoglycan were first detected at the base of a 3- to 4-layer zone of radially organized cells. With formation of a lumen within the aggregate, laminin and type IV collagen were also deposited in the forming basement membrane. During both posterior neuropore closure and secondary neurulation, fibronectin and heparan sulphate proteoglycan were associated with the most caudal portion of the neuroepithelium, the region where newly formed epithelium merges with the consolidated neuroepithelium. In regions of neural crest migration, the deposition of basement membrane components was altered, lacking laminin and type IV collagen, with increased deposition of fibronectin and heparan sulphate proteoglycan.


1984 ◽  
Vol 99 (3) ◽  
pp. 861-869 ◽  
Author(s):  
J G Heathcote ◽  
R R Bruns ◽  
R W Orkin

Rabbit lens epithelial cells display a similar "cobblestone" morphology and produce the same complement of sulphated macromolecules (also see Heathcote, J.G., and R.W. Orkin, 1984, J. Cell Biol., 99:852-860) whether grown on plastic or glass, dried films of gelatin or type IV collagen with laminin, or on gels of type I collagen. There was no evidence of basement membrane formation by these cells when they were grown on plastic, glass, or dried films. In contrast, cultures that had been grown on gels deposited a discrete basement membrane that followed the contours of the basal surfaces of the cells and in addition, they secreted amorphous basement membrane-like material that diffused into the interstices of the gel and associated with the collagen fibrils of the gel. A significant proportion (approximately 70%) of the heparan sulphate proteoglycan fraction that was secreted into the culture medium (fraction MI) when the cells were grown on plastic became associated with the cell-gel layer in the gel cultures. Further, when basement membrane was isolated by detergent extraction, greater than 90% of the 35S-labeled material present was in this heparan sulphate proteoglycan.


1989 ◽  
Vol 261 (1) ◽  
pp. 145-153 ◽  
Author(s):  
A Lindblom ◽  
I Carlstedt ◽  
L Å Fransson

Proteoglycans, metabolically labelled with [3H]leucine and 35SO4(2-), were isolated from the spent media and from guanidinium chloride extracts of cultured human umbilical-vein endothelial cells by using isopycnic density-gradient centrifugation, gel filtration and ion-exchange h.p.l.c. The major proteoglycan species were subjected to SDS/polyacrylamide-gel electrophoresis before and after enzymic degradation of the polysaccharide chains. The cell extract contained mainly a heparan sulphate proteoglycan that has a buoyant density of 1.31 g/ml and a protein core with apparent molecular mass 300 kDa. The latter was heterogeneous and migrated as one major and one minor band. After reduction, the apparent molecular mass of the major band increased to approx. 350 kDa, indicating the presence of intrachain disulphide bonds. The proteoglycan binds to octyl-Sepharose and its polysaccharide chains are extensively degraded by heparan sulphate lyase. The proteoglycans of the medium contained 90% of all the incorporated 35SO4(2-). Here the predominant heparan sulphate proteoglycan was similar to that of the cell extract, but was more heterogeneous and contained an additional core protein with apparent molecular mass 210 kDa. Furthermore, two different chondroitin sulphate proteoglycans were found: one 200 kDa species with a high buoyant density (approx. 1.45 g/ml) and one 100 kDa species with low buoyant density (approx. 1.3 g/ml). Both these proteoglycans have a core protein of molecular mass approx. 47 kDa.


Author(s):  
J P H Shield ◽  
M Carradus ◽  
J E Stone ◽  
L P Hunt ◽  
J D Baum ◽  
...  

Urinary excretion of heparan sulphate proteoglycan (HSPG), the main anionic component of the glomerular basement membrane (GBM), was estimated in 30 adolescents and young adults with insulin dependent diabetes (IDDM), 10 with microalbuminuria and 20 sex matched, diabetic controls of similar age without evidence of microalbuminuria. A further 10 non-diabetic control subjects were also examined. Both groups of patients with diabetes had significantly elevated excretion of HSPG when compared to normal individuals. There was no difference in HSPG excretion between diabetic subjects with and without microalbuminuria.


Sign in / Sign up

Export Citation Format

Share Document