Influence of initial strains on the wave velocity in a prestressed incompressible half-space interacting with an ideal fluid layer

1988 ◽  
Vol 24 (6) ◽  
pp. 593-597
Author(s):  
A. M. Bagno ◽  
A. N. Guz' ◽  
G. I. Shchuruk
2016 ◽  
Vol 25 (1-2) ◽  
pp. 1-13 ◽  
Author(s):  
Shahin Eskandari ◽  
Hossein M. Shodja

AbstractPropagation of shear horizontal surface acoustic waves (SHSAWs) within a functionally graded magneto-electro-elastic (FGMEE) half-space was previously presented (Shodja HM, Eskandari S, Eskandari M. J. Eng. Math. 2015, 1–18) In contrast, the current paper considers propagation of SHSAWs in a medium consisting of an FGMEE layer perfectly bonded to a homogeneous MEE substrate. When the FGMEE layer is described by some special inhomogeneity functions – all the MEE properties have the same variation in depth which may or may not be identical to that of the density – we obtain the exact closed-form solution for the MEE fields. Additionally, certain special inhomogeneity functions with monotonically decreasing bulk shear wave velocity in depth are considered, and the associated boundary value problem is solved using power series solution. This problem in the limit as the layer thickness goes to infinity collapses to an FGMEE half-space with decreasing bulk shear wave velocity in depth. It is shown that in such a medium SHSAW does not propagate. Using power series solution we can afford to consider some FGMEE layers of practical importance, where the composition of the MEE obeys a prescribed volume fraction variation. The dispersive behavior of SHSAWs in the presence of such layers is also examined.


2012 ◽  
Vol 452-453 ◽  
pp. 233-237
Author(s):  
Xue Feng Liu ◽  
You Hua Fan

The formula for the Rayleigh wave velocity in isotropic elastic half-space is studied by many researchers. In their deductions, Cardan’s formula of cubic equations is often used. Based on another formula instead of Cardan’s formula, a new formula for the Rayleigh wave velocity that does not contain complex number is presented here. Our new formula is more reasonable as both the parameters and Rayleigh wave velocity are real. And the computer time can be reduced since there is no complex computation. With this new formula, the variation of Rayleigh wave velocity with the parameters is computed. It shows that Rayleigh wave velocity decreases with the increase of Poission’s ratio when S-wave velocity is fixed.


2020 ◽  
Vol 222 (1) ◽  
pp. 582-594
Author(s):  
Thomas Forbriger ◽  
Lingli Gao ◽  
Peter Malischewsky ◽  
Matthias Ohrnberger ◽  
Yudi Pan

SUMMARY Other than commonly assumed in seismology, the phase velocity of Rayleigh waves is not necessarily a single-valued function of frequency. In fact, a single Rayleigh mode can exist with three different values of phase velocity at one frequency. We demonstrate this for the first higher mode on a realistic shallow seismic structure of a homogeneous layer of unconsolidated sediments on top of a half-space of solid rock (LOH). In the case of LOH a significant contrast to the half-space is required to produce the phenomenon. In a simpler structure of a homogeneous layer with fixed (rigid) bottom (LFB) the phenomenon exists for values of Poisson’s ratio between 0.19 and 0.5 and is most pronounced for P-wave velocity being three times S-wave velocity (Poisson’s ratio of 0.4375). A pavement-like structure (PAV) of two layers on top of a half-space produces the multivaluedness for the fundamental mode. Programs for the computation of synthetic dispersion curves are prone to trouble in such cases. Many of them use mode-follower algorithms which loose track of the dispersion curve and miss the multivalued section. We show results for well established programs. Their inability to properly handle these cases might be one reason why the phenomenon of multivaluedness went unnoticed in seismological Rayleigh wave research for so long. For the very same reason methods of dispersion analysis must fail if they imply wave number kl(ω) for the lth Rayleigh mode to be a single-valued function of frequency ω. This applies in particular to deconvolution methods like phase-matched filters. We demonstrate that a slant-stack analysis fails in the multivalued section, while a Fourier–Bessel transformation captures the complete Rayleigh-wave signal. Waves of finite bandwidth in the multivalued section propagate with positive group-velocity and negative phase-velocity. Their eigenfunctions appear conventional and contain no conspicuous feature.


2016 ◽  
Vol 3 (1) ◽  
pp. 31-42 ◽  
Author(s):  
Ankurjyoti Saikia

This paper deals with a 2-D finite element study in PLAXIS 2D on isolation of steady-state surface vibrations by softer backfilled trenches in an elastic, isotropic, and homogeneous half-space. Effects of barrier geometric features and infill material characteristics on reducing vertical and horizontal components of surface displacements are investigated. This study adopts a non-dimensional approach where the geometric parameters are normalized against the Rayleigh wavelength of vibration in half-space and backfill shear wave velocity is expressed as a ratio of that of parent soil. Softer barriers of shear wave velocity ratios less than unity are considered as they are found significantly effective than stiffer barriers. Effects of the parameters participating on wave isolation are extensively discussed and some guidelines are framed regarding their optimal selection. Non-dimensional charts are developed which would provide a sound basis for designing such barriers in actual engineering practice. The design charts are validated with some documented results and close agreement is obtained.


Author(s):  
Jian-Chu Chen

The effect of local site conditions on soil-structure interaction (SSI) responses of a pressurized water reactor (PWR) containment building founded on different site conditions was investigated using substructure SSI analysis procedure. The structure was analyzed for both surface and embedded foundation conditions for each site with an exception for one half-space site with shear wave velocity 5000 fps. Only the surface foundation was analyzed for this very stiff half-space site. A total of 23 analyses are presented in this paper. Responses including peak ground accelerations and response spectra at selected locations were compared. The results indicate that the local site conditions have a significant influence on SSI response particularly for the structure founded on the surface of shallow soil deposit overlying competent rock. For thick soil sites having shear wave velocity larger than 1000 fps and having soil thickness greater than 3.5 times the radius of the structure, the effect of the soil thickness is not important.


Sign in / Sign up

Export Citation Format

Share Document