Captopril (SQ 14,225): In vitro and in vivo influence on the proliferative response of rat lymphocytes

1982 ◽  
Vol 38 (3) ◽  
pp. 399-401 ◽  
Author(s):  
Lise Binderup ◽  
E. Bramm ◽  
E. Arrigoni-Martelli
Blood ◽  
1984 ◽  
Vol 64 (3) ◽  
pp. 667-671 ◽  
Author(s):  
F Lauria ◽  
D Raspadori ◽  
S Tura

Abstract Abnormalities of T lymphocytes in B cell chronic lymphocytic leukemia (B-CLL) have been extensively documented by several immunologic investigations. Following recent studies pointing to the favorable effect of TP-1, a partially purified extract of calf thymus, on the T cell-mediated immunity of several diseases, including Hodgkin's disease, we have used monoclonal antibodies and the enriched T lymphocytes of 16 untreated B-CLL patients to evaluate the proportion of T cell subsets before and after the administration of TP-1. In addition, the proliferative response to phytohemagglutinin (PHA) and the helper function in a pokeweed mitogen (PWM) system were assessed. In ten cases, the effect of TP-1 was also studied in vitro by evaluating the same parameters before and after incubation of B-CLL T cells with the drug. The study demonstrated that in vivo administration of TP-1 increases significantly (P less than .001) the proportion of the defective helper/inducer T cell population (OKT4-positive cells) in B-CLL, leading to a near normal OKT4/OKT8 ratio. Furthermore, the improved phenotypic profile was accompanied by an increased proliferative response to PHA and, in particular, by a significant increase (P less than .01) of T helper capacity; this increase was, however, insufficient to enable the normalization of the serum immunoglobulin levels. The in vitro incubation of B-CLL T lymphocytes did not succeed in producing significant modifications in distribution and function.


Blood ◽  
1996 ◽  
Vol 88 (10) ◽  
pp. 3710-3719 ◽  
Author(s):  
C Mantel ◽  
Z Luo ◽  
J Canfield ◽  
S Braun ◽  
C Deng ◽  
...  

Steel factor (SLF) is a hematopoietic cytokine that synergizes with other growth factors to induce a greatly enhanced proliferative state of hematopoietic progenitor cells and factor-dependent cell lines. Even though the in vivo importance of SLF in the maintenance and responsiveness of stem and progenitor cells is well documented, the molecular mechanism involved in its synergistic effects are mainly unknown. Some factor-dependent myeloid cell lines respond to the synergistic proliferative effects of SLF plus other cytokines in a manner similar to that of normal myeloid progenitor cells from bone marrow and cord blood. We show here that SLF can synergize with granulocyte-macrophage colony-stimulating factor (GM-CSF) to induce an enhanced phosphorylation of the retinoblastoma gene product and a synergistic increase in the total intracellular protein level of the cyclin-dependent kinase inhibitor, p21cip-1, which is correlated with a simultaneous decrease in p27kip-1 in the human factor-dependent myeloid cell line, M07e. Moreover, these cytokines synergize to increase p21cip- 1 binding and decrease p27kip-1 binding to cyclin-dependent kinase-2 (cdk2), an enzyme required for normal cell cycle progression; these inverse events correlated with increased cdk2 kinase activity. It is also shown that exogenous purified p21cip-1 can displace p27kip-1 already bound to cdk2 in vitro. These data implicate increased p21cip-1 and decreased p27kip-1 intracellular concentrations and their stoichiometric interplay in the enhanced proliferative status of cells stimulated by the combination of SLF and GM-CSF. In support of these findings, it is shown that hematopoietic progenitor cells from mice lacking p21cip-1 are defective in SLF synergistic proliferative response in vitro. Moreover, the cycling status of marrow and spleen progenitors and absolute numbers of marrow progenitors were significantly decreased in the p21cip-1 -/-, compared with the +/+ mice. We conclude that the cdk threshold regulators p21cip-1 and p27kip- 1 play a critical role in the normal mitogenic response of M07e cells and murine myeloid progenitor cells to these cytokines and particularly in the SLF synergistic proliferative response that is important to the normal maintenance of the stem/progenitor cell compartment.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2128-2128
Author(s):  
Alexis Rossignol ◽  
Anne Barra ◽  
Francois Guilhot ◽  
Ali G. Turhan ◽  
Jean-Marc Gombert

Abstract Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by the presence of the pathognomonic Philadelphia chromosome and the chimeric BCR-ABL oncoprotein with deregulated tyrosine kinase activity. It has been shown previously that T cell immunity contributes to the control of CML, and several arguments suggest an implication of NKT cells in this anti-tumoral immunity. We thus compared frequency, phenotype and functions of blood NKT cells (defined by the CD1d tetramer+ Vα24+ staining) in healthy subjects and patients with CML. Three groups of patients were studied, including Patients in chronic phase (CP) (either at diagnosis or unresponsive to treatment) patients in major/complete cytogenetic remission induced by interferon-alpha (IFN-α) or patients in major/complete cytogenetic remission induced by imatinib mesylate (IM, a specific inhibitor of the BCR-ABL tyrosine kinase). Our results showed that blood NKT cells frequency was not significantly different between healthy donors (n = 17), CP patients (n = 14) and IM-treated patients (n = 16) (0.062 % versus 0.079 % versus 0.041 % respectively). On the other hand, this frequency defined as above was found to be dramatically decreased in patients in complete remission after IFN-α therapy ( 0.01 %, n = 15 patients). We have then analyzed from the phenotypic point of view NKT cells from these three groups. This ex vivo phenotypic study showed that NKT phenotype (expression of CCR7 and CD161) was clearly modified in the IFN-treated group as compared to IM-treated or CP patients and healthy donors, with a clear enrichment in CD161-CCR7+ NKT cells (49% versus 26%, 22% and18% respectively). This CD161-CCR7+ phenotype has been described as the central memory T cell phenotype, with increased lymph-node homing and antigen-presenting cell-stimulating capacities. We have then performed functional studies of NKT cells measuring their proliferative response to α-galactosylceramide (αGC) as a specific triggering antigen. NKT proliferative response to α-GC was abolished in CP patients (2-fold expansion versus 83-fold in healthy donors). This functional impairment was found to be restored in patients treated with IM and in patients treated with IFN-α (106-fold and 20-fold expansion respectively), although this latter group had a strongly depleted NKT compartment. More interestingly, the incubation of CP CML cells in the presence of IM (0.5 and 1 micromolar, n = 5) led to the partial restoration of the NKT cell reactivity to α-GC (29-fold expansion versus α-GC alone). Thus, our results suggest that IFN-α therapy leads to the generation of "central memory-like phenotype" NKT cells, which could play an important role in the long-term remissions observed in these patients. Moreover, our results strongly suggest that IM is able to partially restore the antigenic-response of CML NKT cells in vitro and in vivo, suggesting a role of BCR-ABL in the anergic state of these cells as this was observed at diagnosis. The IM-induced restoration of NKT cell proliferation defect in CP patients suggest that the antileukemic effect of IM could also be partially due to this action in vivo. Cellular mechanisms involved in this phenomenon are currently under study.


1989 ◽  
Vol 2 (5) ◽  
pp. 643-649 ◽  
Author(s):  
Christoph Walker ◽  
Christian Herzog ◽  
Peter Rieber ◽  
Gerd Riethmüller ◽  
Wolfgang Müller ◽  
...  

1989 ◽  
Vol 94 (4) ◽  
pp. 725-731
Author(s):  
M.E. Bramwell ◽  
S.M. Humm

Using immunoblotting techniques, the antigen that binds the monoclonal antibody M27 has been clearly defined in terms of apparent molecular mass and distribution. In reducing conditions it has an apparent mass of 178K (K = 10(3) Mr) and is present in the cytoplasm and membranes of all mammalian tissue culture cells so far examined. It is absent from lines derived from avian, piscine and amphibian sources. It is also absent from foetal liver of both rat and mouse, but subsequently appears after cultivation in vitro. Similarly, it can be detected on rat lymphocytes only after mitogenic stimulation. However, it is found on both hepatoma and lymphoma cells in vitro, and on in vivo tumours from murine sources. It thus appears to be associated with cell proliferation.


1991 ◽  
Vol 65 (4) ◽  
pp. 324-329 ◽  
Author(s):  
Hartmut F. Hildebrand ◽  
Anne-Marie Decaestecker ◽  
Fatima-Zohra Arrouijal ◽  
Robert Martinez

Blood ◽  
1984 ◽  
Vol 64 (3) ◽  
pp. 667-671
Author(s):  
F Lauria ◽  
D Raspadori ◽  
S Tura

Abnormalities of T lymphocytes in B cell chronic lymphocytic leukemia (B-CLL) have been extensively documented by several immunologic investigations. Following recent studies pointing to the favorable effect of TP-1, a partially purified extract of calf thymus, on the T cell-mediated immunity of several diseases, including Hodgkin's disease, we have used monoclonal antibodies and the enriched T lymphocytes of 16 untreated B-CLL patients to evaluate the proportion of T cell subsets before and after the administration of TP-1. In addition, the proliferative response to phytohemagglutinin (PHA) and the helper function in a pokeweed mitogen (PWM) system were assessed. In ten cases, the effect of TP-1 was also studied in vitro by evaluating the same parameters before and after incubation of B-CLL T cells with the drug. The study demonstrated that in vivo administration of TP-1 increases significantly (P less than .001) the proportion of the defective helper/inducer T cell population (OKT4-positive cells) in B-CLL, leading to a near normal OKT4/OKT8 ratio. Furthermore, the improved phenotypic profile was accompanied by an increased proliferative response to PHA and, in particular, by a significant increase (P less than .01) of T helper capacity; this increase was, however, insufficient to enable the normalization of the serum immunoglobulin levels. The in vitro incubation of B-CLL T lymphocytes did not succeed in producing significant modifications in distribution and function.


Sign in / Sign up

Export Citation Format

Share Document