Sea level changes south of Japan associated with the non-large-meander path of the Kuroshio

1989 ◽  
Vol 45 (3) ◽  
pp. 181-189 ◽  
Author(s):  
Masaki Kawabe
2012 ◽  
Vol 42 (1) ◽  
pp. 126-140 ◽  
Author(s):  
Elizabeth M. Douglass ◽  
Steven R. Jayne ◽  
Synte Peacock ◽  
Frank O. Bryan ◽  
Mathew E. Maltrud

Abstract A climatologically forced high-resolution model is used to examine variability of subtropical mode water (STMW) in the northwestern Pacific Ocean. Despite the use of annually repeating atmospheric forcing, significant interannual to decadal variability is evident in the volume, temperature, and age of STMW formed in the region. This long time-scale variability is intrinsic to the ocean. The formation and characteristics of STMW are comparable to those observed in nature. STMW is found to be cooler, denser, and shallower in the east than in the west, but time variations in these properties are generally correlated across the full water mass. Formation is found to occur south of the Kuroshio Extension, and after formation STMW is advected westward, as shown by the transport streamfunction. The ideal age and chlorofluorocarbon tracers are used to analyze the life cycle of STMW. Over the full model run, the average age of STMW is found to be 4.1 yr, but there is strong geographical variation in this, from an average age of 3.0 yr in the east to 4.9 yr in the west. This is further evidence that STMW is formed in the east and travels to the west. This is qualitatively confirmed through simulated dye experiments known as transit-time distributions. Changes in STMW formation are correlated with a large meander in the path of the Kuroshio south of Japan. In the model, the large meander inhibits STMW formation just south of Japan, but the export of water with low potential vorticity leads to formation of STMW in the east and an overall increase in volume. This is correlated with an increase in the outcrop area of STMW. Mixed layer depth, on the other hand, is found to be uncorrelated with the volume of STMW.


2018 ◽  
Vol 68 (7) ◽  
pp. 847-865 ◽  
Author(s):  
Akira Nagano ◽  
Takuya Hasegawa ◽  
Hiroyuki Matsumoto ◽  
Keisuke Ariyoshi

2017 ◽  
Vol 47 (10) ◽  
pp. 2563-2576 ◽  
Author(s):  
Yuki Tanaka ◽  
Toshiyuki Hibiya

AbstractThe Kuroshio south of Japan shows bimodal path fluctuations between the large meander (LM) path and the nonlarge meander (NLM) path. The transition from the NLM path to the LM path is triggered by a small meander generated off southwestern Japan. The small meander first propagates eastward (downstream) along the Kuroshio and then rapidly amplifies over Koshu Seamount, located about 200 km south of Japan, leading to the formation of the LM path of the Kuroshio. Although Koshu Seamount is essential for the rapid amplification of the small meander, the underlying physical mechanism is not fully understood. In this study, the role of Koshu Seamount is revisited using a two-layer quasi-geostrophic model that takes into account the effects of bottom topography. Numerical experiments show that the transition from the NLM path to the LM path can be successfully reproduced only when bottom topography mimicking Koshu Seamount is incorporated. In this case, the upper-layer meander trough is rapidly amplified together with a lower-layer anticyclone by baroclinic instability during their passage over the northern slope of Koshu Seamount. A linear stability analysis shows that baroclinic instability over a seamount is caused by resonant coupling between the upper-layer Rossby wave in the eastward background flow and the lower-layer seamount-trapped wave during their eastward propagation over the northern slope of the seamount. The spatial scale and structure of this baroclinically unstable mode are close to those of the numerically reproduced small meander in its early amplification stage over the seamount.


2018 ◽  
Vol 40 (4) ◽  
pp. 525-539 ◽  
Author(s):  
Akira Nagano ◽  
Yusuke Yamashita ◽  
Takuya Hasegawa ◽  
Keisuke Ariyoshi ◽  
Hiroyuki Matsumoto ◽  
...  

2021 ◽  
Author(s):  
Samuel Diabaté ◽  
Didier Swingedouw ◽  
Joël Hirschi ◽  
Aurélie Duchez ◽  
Philip Leadbitter ◽  
...  

<p>The sea level changes along the Atlantic coast of the US have received a lot of attention recently because of an increased rate of rise north of the Gulf Stream separation point since the late 1980s (Sallenger et al., 2012 ; Boon, 2012). While sea-level rise is a major issue for coastal community, sea-level measurements in the region are key to understand the past of the nearby Gulf Stream and the large-scale ocean dynamics. Tide gauges on the coastline have measured the inshore sea-level for many decades and provide a unique window on past oceanic circulation. So far, numerous studies have linked the interannual to multi-decadal coastal sea-level changes to ocean dynamics, including the Gulf Stream strength, the divergence of the Sverdrup transport in the basin interior and the Atlantic meridional overturning circulation. However, other studies argue that local and regional processes, such as the alongshore winds or the river discharges, are processes of greater importance to the coastal sea level.</p><p>The general picture in the Atlantic is hence unclear. Yet, the northwest Atlantic is not the only western boundary region where sea-level has been well sampled. In this study we extend the analysis to the northwest Pacific, where links between the state of the Kuroshio and sea-level are evident (Kawabe, 2005; Sasaki et al., 2014). We discuss similarities and dissimilarities between the western boundary regions. We show for each basin, that the inshore sea level upstream the separation points is in sustained agreement with the meridional shifts of the western boundary current extension. This indicates that long duration tide gauges, such as Fernandina Beach (US) and Hosojima (Japan) could be used as proxies for the Gulf Stream North Wall and the Kuroshio Extension state, respectively.</p><p><strong>References:</strong></p><p>Boon, J. D. (2012). Evidence of sea level acceleration at US and Canadian tide stations, Atlantic Coast, North America. Journal of Coastal Research, 28(6), 1437-1445.<strong> </strong></p><p>Kawabe, M. (2005). Variations of the Kuroshio in the southern region of Japan: Conditions for large meander of the Kuroshio. Journal of oceanography, 61(3), 529-537.</p><p>Sallenger, A. H., Doran, K. S., & Howd, P. A. (2012). Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nature Climate Change, 2(12), 884-888.</p><p>Sasaki, Y. N., Minobe, S., & Miura, Y. (2014). Decadal sea‐level variability along the coast of Japan in response to ocean circulation changes. Journal of Geophysical Research: Oceans, 119(1), 266-275.</p>


2011 ◽  
Vol 41 (9) ◽  
pp. 1624-1629 ◽  
Author(s):  
Takahiro Endoh ◽  
Hiroyuki Tsujino ◽  
Toshiyuki Hibiya

Abstract Using an inflow–outflow numerical model, the authors demonstrate that the existence of Koshu Seamount, located about 200 km to the south of Cape Shiono-misaki, is essential in creating the large meander (LM) of the Kuroshio. When Koshu Seamount is completely smoothed out, the meander trough propagates away without being amplified to form the LM. In contrast, nearly the same LM as in the case with full topography is formed when the foot of Koshu Seamount remains without being smoothed out and also when the foot of Koshu Seamount is filled in so that the upper part of Koshu Seamount remains. A linear stability analysis applied to the model output shows that the Kuroshio becomes baroclinically most unstable when the water depth decreases offshoreward. The authors therefore conclude that the enhancement of baroclinic instability over the northern slope of Koshu Seamount is a prerequisite to the formation of the LM.


Sign in / Sign up

Export Citation Format

Share Document