Constant velocity transmission between skew shafts by universal coupling

Meccanica ◽  
1980 ◽  
Vol 15 (2) ◽  
pp. 118-126 ◽  
Author(s):  
Piermaria Davoli
Author(s):  
Jingjun Yu ◽  
Jiazhu Yu ◽  
Kang Wu ◽  
Xianwen Kong

This paper presents a new type of constant-velocity transmission devices based on parallel mechanisms with properties of equal-diameter spherical pure rolling. The method we used is essentially an extension of the planar ellipse gear to the spherical one. Both the fixed and moving axodes of a specified parallel mechanism are obtained, as traced by the spatial instant screw axis (ISA) with respect to the fixed and moving coordinate systems. Based on Poinsot’s theorem and achievements, a series of these parallel mechanisms which satisfy constant-velocity condition have been disclosed correspondingly. Their motion range and transmission performances are also explored by taking the 3-4R mechanism as an instance. As the main part of this paper, two important applications for this type of constant-velocity transmission devices are also explored. One is used as a gearless spherical gear, and the other is used as a constant-velocity universal joint (CVJ). Simulations were fulfilled on ADAMS to verify the transmission performance in terms of different applications.


1979 ◽  
Vol 101 (4) ◽  
pp. 604-613 ◽  
Author(s):  
M. J. Gilmartin ◽  
J. Duffy

Three types of spatial 7R mechanisms are identified as being suitable for transmitting motion with a constant velocity ratio between two parallel shafts. A displacement analysis of each type is made using a vector loop method in conjunction with the Unified Theory method. Numerical results are presented for an example of each type. It is also shown how the double Hooke joint coupling for parallel shafts is a special case of one of these three types.


Author(s):  
M.D. Coutts ◽  
E.R. Levin ◽  
J.G. Woodward

While record grooves have been studied by transmission electron microscopy with replica techniques, and by optical microscopy, the former are cumbersome and restricted and the latter limited by lack of depth of focus and resolution at higher magnification. With its great depth of focus and ease in specimen manipulation, the scanning electron microscope is admirably suited for record wear studies.A special RCA sweep frequency test record was used with both lateral and vertical modulation bands. The signal is a repetitive, constant-velocity sweep from 2 to 20 kHz having a duration and repetitive rate of approximately 0.1 sec. and a peak velocity of 5.5 cm/s.A series of different pickups and numbers of plays were used on vinyl records. One centimeter discs were then cut out, mounted and coated with 200 Å of gold to prevent charging during examination. Wear studies were made by taking micrographs of record grooves having 1, 10 and 50 plays with each stylus and comparing with typical “no-play” grooves. Fig. 1 shows unplayed grooves in a vinyl pressing with sweep-frequency modulation in the lateral mode.


2020 ◽  
Vol 2020 (15) ◽  
pp. 349-1-349-9
Author(s):  
Daulet Kenzhebalin ◽  
Baekdu Choi ◽  
Sige Hu ◽  
Yin Wang ◽  
Davi He ◽  
...  

Inkjet printer motor control consists of moving the printhead in the scan direction and in the process direction. Both movements have different objectives. Scan direction movement needs to have constant velocity and process direction movement needs to have accurate movement. In this paper, we discuss a method for controlling the velocity of the printhead and how to tune the motor control parameters. We also design six test pages for testing accuracy of the printhead movement and cartridge properties. For each test page, we discuss expected prints, common printer control problems that could alter the print quality, and how to identify them.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1264
Author(s):  
Vladimir V. Uchaikin ◽  
Renat T. Sibatov ◽  
Dmitry N. Bezbatko

One-dimensional random walks with a constant velocity between scattering are considered. The exact solution is expressed in terms of multiple convolutions of path-distributions assumed to be different for positive and negative directions of the walk axis. Several special cases are considered when the convolutions are expressed in explicit form. As a particular case, the solution of A. S. Monin for a symmetric random walk with exponential path distribution and its generalization to the asymmetric case are obtained. Solution of fractional telegraph equation with the fractional material derivative is presented. Asymptotic behavior of its solution for an asymmetric case is provided.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi Shu ◽  
Daniel Galles ◽  
Ottman A. Tertuliano ◽  
Brandon A. McWilliams ◽  
Nancy Yang ◽  
...  

AbstractThe study of microstructure evolution in additive manufacturing of metals would be aided by knowing the thermal history. Since temperature measurements beneath the surface are difficult, estimates are obtained from computational thermo-mechanical models calibrated against traces left in the sample revealed after etching, such as the trace of the melt pool boundary. Here we examine the question of how reliable thermal histories computed from a model that reproduces the melt pool trace are. To this end, we perform experiments in which one of two different laser beams moves with constant velocity and power over a substrate of 17-4PH SS or Ti-6Al-4V, with low enough power to avoid generating a keyhole. We find that thermal histories appear to be reliably computed provided that (a) the power density distribution of the laser beam over the substrate is well characterized, and (b) convective heat transport effects are accounted for. Poor control of the laser beam leads to potentially multiple three-dimensional melt pool shapes compatible with the melt pool trace, and therefore to multiple potential thermal histories. Ignoring convective effects leads to results that are inconsistent with experiments, even for the mild melt pools here.


Sign in / Sign up

Export Citation Format

Share Document