Spatial and temporal heterogeneity in soil nutrient supply measured usingin situ ion-exchange resin bags

1986 ◽  
Vol 96 (3) ◽  
pp. 445-450 ◽  
Author(s):  
David J. Gibson
2016 ◽  
Vol 8 (10) ◽  
pp. 189
Author(s):  
Plinio L. Kroth ◽  
Clesio Gianello ◽  
Leandro Bortolon ◽  
Jairo A. Schlindwein ◽  
Elisandra S.O. Bortolon

<p>The ion exchange resin method has received considerable attention as an alternative soil test method to evaluate plant available nutrients. This study sought to investigate the effect of changes to the resin standard method in the capacity of the resin to extract soil P, K, Ca, and Mg in soils with different texture. We tested the following modifications: soil grinding levels (&lt; 2 mm; &lt; 0.3 mm), shaking time (8 h; 16 h; 24 h), reciprocation level (12.5 rpm; 25 rpm; 50 rpm), solution and elution saturation concentration (0.25/0.25 mol L<sup>-1</sup>; 0.5/0.5 mol L<sup>-1</sup>; 1.0/1.0 mol L<sup>-1</sup>), soil:solution ratio (1:5 v:v; 1:10 v:v; 1:16 v:v; 1:25 v:v), room temperature (10 <sup>o</sup>C, 15 <sup>o</sup>C, 25 <sup>o</sup>C, 40 <sup>o</sup>C), and resin amount (1 n; 2 n). When one factor was changed all the others were kept the same as the standard procedure. We selected the five most representative soil orders used for crop production in Southern Brazil which have a wide range of clay, organic matter, Mehlich-1 extractable P and K, and KCl exchangeable Ca, and Mg contents. Results showed that modifications on the standard extraction procedure affected the amounts of soil P, K, Ca, and Mg extracted. Temperature was the main factor affecting the amount of P extracted from the soil with ion exchange membrane resin. Our results can be useful to other regions that might be interested in adopting the resin soil test method, allowing others to identify the impacts of similar method modifications on soil nutrient availability according to soil type, soil management, and temperature conditions.</p>


2008 ◽  
Vol 24 (6) ◽  
pp. 647-654 ◽  
Author(s):  
Corli Coetsee ◽  
Edmund C. February ◽  
William J. Bond

Abstract:There is a perception that sustained frequent fires cause nitrogen limitation over the long term (50–100 y) by volatilizing the nitrogen in soil, plant biomass and litter. Here we test this perception in a South African savanna located in the Kruger National Park. At our study site we compare the effects of 50 y of fire exclusion, season (August and February) and frequency (triennial and annual August and triennial February) of burn on nitrogen cycling and availability. We do this using three different methods to determine nitrogen mineralization; in situ incubations, laboratory incubations and ion-exchange resin bags. On each treatment we established two parallel transects 100 m apart with 10 sampling points per treatment along these transects. Daily mineralization rates for in situ incubations were determined monthly from August 2004 to June 2005 at each of the sampling points. Ion-exchange resin bags were buried (5 cm) at the same points and left in the field from August 2004 to August 2005. In February 2005 five randomly located soil samples from each of the four treatments were collected for laboratory incubations using a 7-cm-diameter soil auger. Regardless of method used our results show that there are no significant differences in daily nitrogen mineralization rates after 50 y of different burning treatments from annual burning to fire exclusion. In fact, both in situ and laboratory incubations show that nitrogen availability is higher on the annual burn than the fire exclusion (0.16 μg g−1 soil d−1 vs. 0.11 μg g−1 soil d−1 and 0.46 μg g−1 soil d−1 vs. 0.30 μg g−1 soil d−1 respectively). Perceived negative effects of fire on ecosystem functioning has curbed the use of fire as a management tool with fire often actively suppressed in savanna. The results of our study show that fire can be used more vigorously in mesic African savanna to manipulate tree:grass ratios without negatively affecting the nitrogen cycle.


2016 ◽  
Vol 52 ◽  
pp. 171-176
Author(s):  
M. Palkina ◽  
O. Metlitska

The aim of the research – adaptation, optimization and using of existing DNA extraction methods from bees’ biological material with the reagent «Chelex-100" under complex economic conditions of native laboratories, which will optimize labour costs and improve the economic performance of DNA extraction protocol. Materials and methods. In order to conduct the research the samples of honey bees’ biological material: queen pupae exuviae, larvae of drone brood, some adult bees’ bodies (head and thorax) were selected. Bowl and drone brood were obtained from the experimental bee hives of Institute of Apiculture nd. a. P. I. Prokopovich of NAAS. DNA extraction from biosamples of Apis mellifera ssp. was carried out using «Chelex-100®» ion exchange resin in different concentrations and combinations. Before setting tests for determination of quantitative and quality indexes, dilution of DNA samples of the probed object was conducted in ratio 1:40. The degree of contamination with protein and polysaccharide fractions (OD 260/230), quantitative content of DNA (OD 260/280) in the extracted tests were conducted using spectrophotometer of «Biospec – nano» at the terms of sample volume in 2 µl and length of optical way in 0,7 mm [7]. Verification of DNA samples from biological material of bees, isolated by «Chelex-100®», was conducted after cold keeping during 24 hours at 20°C using PСR with primaries to the fragment of gene of quantitative trait locus (QTL) Sting-2 of next structure [8]:  3' – CTC GAC GAG ACG ACC AAC TTG – 5’; 3' – AAC CAG AGT ATC GCG AGT GTT AC – 5’ Program of amplification: 94 °C – 5 minutes – 1 cycle; 94 °C – 1 minute, 57°C – 1 minute, 72 °C – 2 minutes – 30 cycles; elongation after 72°C during 2 minutes – 1 cycle. The division of obtained amplicons was conducted by gel electrophoresis at a low current – 7 µÀ, in 1,5 % agarose gel (Sigma ®) in TAE buffer [7]. The results. At the time of optimization of DNA isolation methods, according to existing methods of foreign experts, it was found optimal volume of ion exchange resin solution was in the proposed concentration: instead of 60 µl of solution used 120 µl of «Chelex-100®», time of incubation was also amended from 30 minutes to 180 minutes [9]. The use of the author's combination of method «Chelex-100®» with lysis enzymes, proteinase K and detergents (1M dithiothreitol), as time of incubation was also amended, which was reduced to 180 minutes instead of the proposed 12 hours [10]. Changes in quality characteristics of obtained DNA in samples after reduction in incubation time were not found. Conclusions. The most economical method of DNA isolation from bees’ biological material is 20% solution of «Chelex-100» ion exchange resin with the duration of the incubation period of 180 minutes. It should also be noted that the best results can be obtained from exuviae, selected immediately after the queen’s exit from bowl, that reduces the likelihood of DNA molecules destruction under the influence of nucleases activation, but not later than 12 hours from release using the technology of isolated obtain of queens.


Sign in / Sign up

Export Citation Format

Share Document