Rhizosphere soil nitrogenase (C2H2 reduction) as influenced by plant density in intermediate deep water rice

1984 ◽  
Vol 78 (3) ◽  
pp. 433-435
Author(s):  
J. L. N. Rao ◽  
B. B. Reddy ◽  
V. Rajaramamohan Rao

1983 ◽  
Vol 101 (3) ◽  
pp. 547-551 ◽  
Author(s):  
J. L. N. Rao ◽  
B. B. Reddy ◽  
V. Rajaramamohan Rao

SUMMARYIn a field experiment, the influence of different forms and methods of application of urea nitrogen on the rice rhizosphere soil nitrogenase was evaluated under simulated intermediate deep water situations. Nitrogenase was high when the soil received small amounts of nitrogen and phosphorus with a water level of 20–25 cm. Moreover, during and after the flash floods the nitrogenase activity was considerably increased. There was a significant reduction in the nitrogenase activity when the nitrogen was applied to the shallow water through urea briquettes, but when it was applied either behind the plough or between the rows, the activity was stimulated. Increased water level of about 50 cm for prolonged periods considerably reduced the nitrogenase activity. Results indicate that the method of application of urea nitrogen and the water level influenced the rhizosphere soil nitrogenase activity under intermediate deep water situations.



1981 ◽  
Vol 29 (5) ◽  
pp. 579 ◽  
Author(s):  
D Monk ◽  
JS Pate ◽  
WA Loneragan

Growth, reproduction and longevity of the fire weed Acacia pulchella var. glaberrima were examined in natural populations of known age in coastal sands in and around Perth, W.A. Dense populations (10000 plantsiha) were established after a summer burn; plant density was 30% of its initial value at 4 years. less than 8% at 13 years. Plants accumulated dry matter, nitrogen and phosphorus throughout a 13-year growth period. Seed production commenced at 2 years, reached a maximum (12000 seeds per plant per year) at 3 or 4 years declining to 2000 seedsiplant in the 13th year. Only a small fraction of the shed seed accumulated in soil under the stands. Changes in total plant N, nodule weightlplant, and C2H2 reduction capacity of detached nodules were followed in populations in their first, second and fourth growing seasons. A new set of nodules formed with the autumn rains, peak nodule mass and C2H2 reduction activity were recorded in July-October, and virtually no nodules survived the summer into a second growing season. A glasshouse study of N accumulation and C2H2 reduction by nodules in minus N sand culture gave acalibration value of 2.26 mol C2H2 : mol N2 fixed. Applying this value to data from nativepopulations, 8% of the N accumulated by first season plants, 45% of the N of second season plants and 68% of the N of fourth season plants were estimated to be derived from symbiosis. Average annual returns of N to the ecosystem were estimated at 3.9 kg/ha, probably more than half of this from N2 fixation. Progressive death of plants in the populations gave the greatest return ( 1.9 kg N per ha per yr), the remainder from litter (1 kg N per ha per yr) and shed seed ( 1 kg N per ha per yr).



1987 ◽  
Vol 102 (1) ◽  
pp. 131-132 ◽  
Author(s):  
M. M. Panda ◽  
B. C. Ghosh ◽  
D. P. Sinhababu


1996 ◽  
Vol 201 (2) ◽  
pp. 179-242 ◽  
Author(s):  
Xabier Orue-Etxebarria ◽  
Estibaliz Apellaniz ◽  
Juan Ignacio Baceta ◽  
Rodolfo Coccioni ◽  
Rita di Leo ◽  
...  


2010 ◽  
Vol 61 (4) ◽  
pp. 279 ◽  
Author(s):  
Joachim H. J. R. Makoi ◽  
Samson B. M. Chimphango ◽  
Felix D. Dakora

The aim of this study was to assess P acquisition efficiency in 5 cowpea genotypes in mixed culture and at different plant densities using assays of acid and alkaline phosphatase activity and measurement of P in organs. Five cowpea genotypes (2 improved cvv. ITH98-46 and TVu1509, and 3 farmer-selected varieties, namely Bensogla, Sanzie, and Omondaw) were grown in the field at 2 planting densities (83 333 and 166 666 plants/ha) under monoculture and mixed culture with sorghum during 2005 and 2006. Fresh plant roots and rhizosphere soils were collected during the 2 years of experimentation, and assayed for acid and alkaline phosphatase activity. P concentrations in root tissue and rhizosphere soil were also determined using inductively coupled plasma-mass spectrometry. The data for 2005 and 2006 were similar, and therefore pooled for statistical analysis. Our results showed that raising cowpea density from 83 333 to 166 666 plants/ha significantly increased both acid and alkaline phosphatase activity in the rhizosphere, just as mixed culture (or intercropping) also increased the acid and alkaline phosphatase activity in cowpea rhizosphere soil. High plant density and mixed culture (or intercropping) also raised the acid phosphatase activity in fresh roots of cowpea plants. The increased enzyme activity in roots and rhizosphere soil resulted in significantly improved P nutrition in cowpea, greater plant growth, and higher grain yield in the farmer-selected varieties, especially cv. Sanzie. This suggests that field-grown legumes can be screened for high P acquisition efficiency by assaying for acid and alkaline phosphatase activities.



1988 ◽  
Vol 110 (1) ◽  
pp. 53-59 ◽  
Author(s):  
M. D. Reddy ◽  
M. M. Panda ◽  
B. C. Ghosh ◽  
B. B. Reddy

SummaryUnder conditions of semi-deep water (51–100 cm) rice varieties with greater plant height produced more dry matter and grain yield as N fertilizer was increased from 0 to 20 and 40 kg/ha. The varieties which performed better in a situation of slow rise in water level to a depth of 120 cm could not survive a quick rise in water level owing to their lesser plant height and elongation ability. The loss of dry matter (dead and dried leaves) was also greater in varieties susceptible to deep water than varieties tolerant of deep water.With the increase in N fertilizer, there was increase in plant height, number of tillers, dry-matter production and grain yield. The loss of dry matter was less in crops given N fertilizer than in those not given N fertilizer. The varieties capable of producing higher grain yield in response to N fertilizer under semi-deep water did not improve their grain yield under intermediate deep water (15–50 cm). With increase in application of N fertilizer from 0 to 40 kg/ha the N concentration in grain increased. N concentration did not vary in straw under intermediate deep water, there was no definite trend in semi-deep water, and it was higher under conditions of semi-deep than intermediate deep water.



2018 ◽  
Vol 16 (3) ◽  
pp. 809-819
Author(s):  
Daniel G. Alfaro Vigo ◽  
Gladys Calle Cardeña


1988 ◽  
Vol 110 (2) ◽  
pp. 309-313 ◽  
Author(s):  
M. M. Panda ◽  
B. C. Ghosh ◽  
M. D. Reddy ◽  
B. B. Reddy

SummaryUnder intermediate deepwater (15–50 cm) conditions, sulphur-coated urea (SOU) drilled behind the plough at sowing was superior to other coated (neem, lac, coaltar) urea materials and broadcast incorporation of prilled urea in increasing the yield of direct-sown rice. In transplanted rice, the grain yield was highest with urea super granules (USG) placed 30 days after transplanting (DAT) followed by SOU broadcast incorporation at planting. N-use efficiency increased considerably with SCU drilled behind the plough or USG placed 20 days after sowing in shallow standing water in direct-sown rice and SCU broadcast incorporation or USG placed 30 DAT in transplanted rice.



1987 ◽  
Vol 23 (2) ◽  
pp. 201-206 ◽  
Author(s):  
B. B. Reddy ◽  
B. C. Ghosh ◽  
M. D. Reddy

SummaryWater depth at or shortly after planting is critical for the establishment and subsequent tolerance of excess water in rice. A crop transplanted early in the season produced twice as much grain as a later planted crop. A semi-dwarf variety (CR 1018) and a taller variety (CR 1030) performed similarly after early transplanting, but the tall variety performed better when planted late under excess water. Seedling age did not greatly alter the yields when crops were transplanted early, but after late planting 45-day-old seedlings were best.



2002 ◽  
Vol 203 (3-4) ◽  
pp. 999-1014 ◽  
Author(s):  
S.B. Moran ◽  
C.-C. Shen ◽  
H.N. Edmonds ◽  
S.E. Weinstein ◽  
J.N. Smith ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document