Features of the zonal disintegration of roof rocks and a coal seam around mine workings

1990 ◽  
Vol 26 (5) ◽  
pp. 418-427 ◽  
Author(s):  
A. F. Borzykh
2021 ◽  
pp. 9-16
Author(s):  
S. Barsukov ◽  
А.Т. Batyrkhanova ◽  
Vladimir Dyomin

Purpose.  The published studies are aimed at determining the mechanism of deformation of the rocks of the contour around the workings in terms of the parameters of the emerging fracturing and their dependence on the indicators of the strength of the rocks and the depth of occurrence in the massif. The tasks of the study include the installation of fracture indicators, the determination of the parameters of the development of the deformation process around the working, including the effect of longwall mining and taking into account the possibility of reuse of the workings. Methodology. To solve the set tasks, the method of field observations was used together with the use of regression dependencies to determine the dependences of the parameters on the influencing factors. In addition, the method of full-scale pull-out tests of anchor support was used, which made it possible to determine the clamping forces of the anchors. Originality. In the course of the research, the dependences of stresses and deformation along the K7 coal seam in the conditions of the mine named after Kuzembaev CD JSC "ArcelorMittal Temirtau" for the massif around the mine with fastening. Rational parameters for the use of roof bolting in preparatory mine workings have been established. This type of fastening provides direct contact between rocks and lining. Analysis of the results of calculating the parameters of the roof bolting showed that to maintain the roof in the development workings, it is necessary to take into account the parameters of the roof bolting. The main parameters include the length of the anchors, the total resistance of the roof bolting and the density of the anchors. Anchor support forms laminated rock beams in the roof rocks, which ensure the stability of the workings. Conclusions and practical significance. The results of studies devoted to the establishment of the influence of mining-geological and mining-technical factors on the formation of zones of inelastic deformation in the host rocks were considered. Significant dependences of the deformation processes of rocks in the massif around the workings were obtained, and the parabolic zone of destruction of rocks was determined. The practical significance of the research consists in determining the actual indicators of the required bearing capacity of the anchorage at two levels in the conditions of the development of the coal seam k7 of the Kuzembaev mine.  


Author(s):  
Oleksandr Ahafonov ◽  
◽  
Daria Chepiga ◽  
Anton Polozhiy ◽  
Iryna Bessarab ◽  
...  

Purpose. Substantiation of expediency and admissibility of use of the simplified calculation models of a coal seam roof for an estimation of its stability under the action of external loadings. Methods. To achieve this purpose, the studies have been performed using the basic principles of the theory of elasticity and bending of plates, in which the coal seam roof is represented as a model of a rectangular plate or a beam with a symmetrical cross-section with different support conditions. Results. To substantiate and select methods for studying the bending deformations of the roof in the coal massif containing the maingates, the three-dimensional base plate model and the beam model are compared, taking into account the kinematic boundary conditions and the influence of external distributed load. Using the theory of plate bending, the equations for determining the deflections of the coal seam roof in three-dimensional basic models under certain assumptions have a large dimension. After the conditional division of the plate into beams of unit width and symmetrical section, when describing the normal deflections of the middle surface of the studied models, the transition from the partial derivative equation to the usual differential equations is carried out. In this case, the studies of bending deformations of roof rocks are reduced to solving a flat problem in the cross-section of the beam. A comparison of solutions obtained by the methods of the three-dimensional theory of elasticity and strength of materials was performed. For a beam with a symmetrical section, the deflection lies in a plane whose angle of inclination coincides with the direction of the applied load. The calculations did not take into account the difference between the intensity of the surface load applied to the beam. Differences in determining the magnitude of the deflections of the roof in the model of the plate concerning the model of the beam reach 5%, which is acceptable for mining problems. Scientific novelty. To study the bending deformations and determine the magnitude of the roof deflection in models under external uniform distributed load, placed within the simulated plate, a strip of unit width was selected, which has a symmetrical cross-section and is a characteristic component of the plate structure and it is considered as a separate load-bearing element with supports, the cross-sections of this element is remained flat when bending. The deflection of such a linear element is described by the differential equations of the bent axis of the beam without taking into account the integral stiffness of the model, and the vector of its complete displacement coincides with the vector of the force line. Practical significance. In the laboratory, to study the bending deformations and their impact on the stability of the coal seam roof under external loads, it is advisable to use a model of a single width beam with a symmetrical section with supports, the type of which is determined by rock pressure control and secondary support of the maingate at the extraction layout of the coal mine.


1993 ◽  
Vol 29 (3) ◽  
pp. 268-271
Author(s):  
A. M. Goryunov ◽  
V. E. Volkov ◽  
V. I. Klopov ◽  
V. M. Makridin ◽  
A. N. Naumov ◽  
...  
Keyword(s):  

2020 ◽  
Vol 168 ◽  
pp. 00068
Author(s):  
Vasyl Zberovskyi ◽  
Kostiantyn Sofiiskyi ◽  
Rishard Stasevych ◽  
Artem Pazynych ◽  
Jan Pinka ◽  
...  

The paper represents the results of monitoring and evaluation of the efficiency of hydroimpulsive disintegration of outburst-prone coal seams in the stopes of development mine workings using a system of sound detecting facilities. Methods of acoustic emission control have been considered as well as the monitoring tasks to evaluate rock mass conditions before the procedure and after it inclusive of the results of sound accompaniment of hydraulic disintegration of the coal seam. It has been determined that the higher concentration of stresses within the rock mass is, the more efficient action of high frequency self-oscillations of cavitation transmitter is on both the fissuring and changes in gas-dynamic state of the coal seam. It has been recommended to apply a mode of impulsive fluid pumping under the conditions where coal seam is in the stress-strain state.


1972 ◽  
Vol 8 (5) ◽  
pp. 564-567
Author(s):  
B. G. Meshcheryakov ◽  
V. N. Puzyrev ◽  
V. A. Poskachin

2010 ◽  
Vol 82 (1-2) ◽  
pp. 116-124 ◽  
Author(s):  
Erwin L. Zodrow ◽  
Maria Mastalerz ◽  
Ulrike Werner-Zwanziger ◽  
José A. D'Angelo
Keyword(s):  

2021 ◽  
Vol 15 (1) ◽  
pp. 1-10
Author(s):  
Volodymyr Bondarenko ◽  
Iryna Kovalevska ◽  
Frederick Cawood ◽  
Oleksandr Husiev ◽  
Vasyl Snihur ◽  
...  

Purpose. The purpose is to develop the calculation methods for minimizing the load on the fastening system of the preparatory mine working in difficult mining and geological conditions of its maintenance. Methods. By analysing the multivariate computational experiments on the study of the stress-strain state of the load-bearing elements of the ‘massif – support’ system in the preparatory mine workings by means of the finite-element method, as well as mine observations and measurements of displacement in the coal-overlaying rock formation. Findings. An algorithm has been developed for searching the rational modes of the fastening system resistance and methods for minimizing the load on the support of the preparatory mine working, maintained in very complex mining and geological conditions. Originality.The methodical principles have been developed of minimizing the load on the fastening system of the preparatory mine working, which are based on the use of a combination of stress-strain state studies of the ‘massif – support’ system by means of the finite element method and provisions of normative documents for calculating the dimensions of the dome of natural equilibrium of the mine working roof rocks. Practical implications. The operation modes optimisation of the load-bearing elements interaction of the mine working fastening system reduces the material and labour costs during its construction and increases its stability during operation. Keywords: analysis, calculation, optimization, support, preparatory mine working, stope works, roof rocks, collapse


Author(s):  
S. Podkopaev ◽  
◽  
E. Konopel'ko ◽  
I. Iordanov ◽  
D. Chepiga ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (3) ◽  
pp. 441-448
Author(s):  
Nikolai KACHURIN ◽  
◽  
Galina STAS ◽  
Alexander KACHURIN ◽  
◽  
...  

The goal of the research was to clarify the regularities of the dynamics of gas release from the surface of the outcrop of the developed coal seam. The main research methods were theoretical methods of mathematical physics and non-equilibrium thermodynamics. Gas-bearing coal seams are usually mined underground. When driving development workings, outcropping surfaces of gas-bearing coal seams appear and gases in the seams under excessive pressure are released into the atmosphere of the mine workings. Gas-bearing coal seams are usually mined underground. When driving preparatory workings, surfaces of outcropping of gas-bearing coal seams arise and gases that are in the seams under excessive pressure are released into the atmosphere of the mine workings. The most important gas-dynamic characteristic of this process is the rate of gas release, which represents the volume of gases released from a unit area of exposure of a coal seam per unit of time. A generalized law of resistance for gas filtration in a rock mass is recommended, and a fairly rigorous thermodynamic substantiation is given. It is shown that the densities of gas mass flows in accordance with the postulate of their linear relationship with the driving forces are determined by the Onsager relation. The results obtained and their discussion is presented. Mathematical models are proposed for engineering calculations of the dynamics of methane release from the outcropping surface of medium-thick coal seams. The error of the adopted approximations does not exceed 3%. The intensity of methane release is directly related to the planogram of work in the working face. Analysis of this dependence indicates that during the extraction cycle, methane release increases due to an increase in the area of the gas-release surface. The main conclusions are as follows: mathematical modeling of the processes of gas movement in a porous sorbing medium using approximate mathematical models representing linearized equations of mathematical physics; the regularities of the dynamics of the rate of gas release from the surface of the outcrop of a gas-bearing coal seam is the theoretical basis for the mathematical description of the process of gas release; the use of a linearized hyperbolic filtration equation most accurately describes the processes of methane release from the outcropping surface of mined coal seams.


Sign in / Sign up

Export Citation Format

Share Document