Impedance method for determining the mounted resonant frequency of piezoelectric sensors

1999 ◽  
Vol 42 (8) ◽  
pp. 801-802
Author(s):  
M. I. Subbotin
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shuxin Yang

In this paper, piezoelectric sensing elements are used to assist in the study and analysis of ceramic art process optimization and visual quantization characteristics. A series piezoelectric element impedance sensor is designed based on the resonant frequency characteristics of the series piezoelectric element. Combining the resonant frequency characteristics of the series piezoelectric element and the basic principle of the impedance method, a multisensing impedance method based on the series piezoelectric element impedance sensor is proposed. The feasibility of the multisensing impedance method for monitoring the grout compactness was verified experimentally, and the basic principle of the method was further investigated by finite element simulation. The vase-type porcelain vessels were classified according to symmetry elements to find the characteristic points, the abdominal morphology was used as the basis for classification, and the screened samples were extracted from the contours to exclude the influence of other factors on the vessel shape. By the symmetrical elements of each type of ware, the classification principle of the ware type was designed and divided into six types, and each type was further subdivided into various types to establish a typological map of Qing dynasty bottle porcelain. The information entropy redundancy that describes the uniformity of the code appearance probability and the visual redundancy that describes the human eye’s sensitivity to image content or details are all entry points that can be considered for image coding. The experimental results show that the LBP-HOG fusion features can digitally express the information of ancient ceramic ornamentation and dig and verify the evolution of ceramic ornamentation with the times from the digital quantity. The GRNN model has an excellent performance in processing small samples of ancient ceramic data.


2005 ◽  
Vol 2 (2) ◽  
pp. 79
Author(s):  
Mohd Khairul Mohd Salleh ◽  
Mohamad Syukri Suhaili ◽  
Zuhani Ismail ◽  
Zaiki Awang

A simple design of a metallic circular cross-sectional air-filled cavity is presented. Two probes of varied lengths are used to excite TE112-mode wave into the cavity to give a resonant frequency of 5.86 GHz. The experiments show that the resonant frequency of the cavity resonator decreases as the lengths of the probes are increased. The shortest probe in the range of study gives the closest resonant frequency to the one desired.


PIERS Online ◽  
2009 ◽  
Vol 5 (4) ◽  
pp. 350-354 ◽  
Author(s):  
Tarek Fortaki ◽  
Siham Benkouda ◽  
Mounir Amir ◽  
Abdelmadjid Benghalia

Author(s):  
Iago Smanio Saad ◽  
Gilmar Guimaraes ◽  
CLEUDMAR ARAÚJO ◽  
Gabriela Lima Menegaz

Author(s):  
Джугурян Т.Г. ◽  
Марчук В.І. ◽  
Марчук І. В.

During the design of operations of centerless intermittent grinding of surfaces there is a need to identify the natural frequencies of oscillations of the elements of the technological system of grinding. The method of calculation of rigidity, vibration resistance and forced oscillations of the elements of the circular grinding machine is offered in the article. Carrying out of experimental researches of rigidity of elastic system of the SASL 5AD grinding machine. We conducted preliminary experimental studies to measure the oscillations of various elements of the elastic system of the SASL 5AD grinding machine in the horizontal plane by piezoelectric sensors during grinding with continuous and discontinuous circles with different geometric parameters.


Author(s):  
Jin Xu ◽  
Yuting Zhao

Background: Detuning is the main problem that affects the efficiency and transmission distance of the resonant coupling Wireless Power Transmission (WPT). The distance of load and the offset of the load position could cause serious detuning. Methods: This paper presents an adjustable coil in which inductance can be adjusted. Then a model of WPT was established that could compensate resonant frequency automatically using the adjustable coil. Next, the relationship between the primary resonant frequency and the transmission efficiency is analyzed from the circuit. The analysis proved that the design of the adjustable coil could improve the transmission efficiency of the WPT system. Finally, a prototype of WPT system was built. Results: The experimental results showed that WPT system with adjustable coil can improve the transmission efficiency which proves the theoretical research. At the same time, it has essential reference value for the future research of WPT. Conclusion: In this paper, aiming at the system detuning caused by some other factors, such as the position shift of the load during the wireless power transmission, an adjustable coil is proposed.


Sign in / Sign up

Export Citation Format

Share Document