Potential for employing the distribution of anomalous non-methylene-interrupted dienoic fatty acids in several marine invertebrates as part of food web studies

Lipids ◽  
1977 ◽  
Vol 12 (2) ◽  
pp. 170-176 ◽  
Author(s):  
M. Paradis ◽  
R. G. Ackman
2010 ◽  
Vol 61 (5) ◽  
pp. 621 ◽  
Author(s):  
Carl J. Svensson ◽  
Glenn A. Hyndes ◽  
Paul S. Lavery

Meiofauna are often important in the transfer of organic material to higher trophic levels in aquatic environments. However, in food web analysis the group is frequently pooled or ignored owing to the difficulty in isolating individual components of the assemblage. In this study, we developed and tested a new method for extracting photopositive and detritus-free copepod samples from sediments, and compared this method to a previous technique (Couch 1989). In our initial trials, ∼400 copepods (all orders included) were collected in 15 min compared with 60 copepods using Couch’s method. In subsequent trials that focussed on specific orders of copepods, our method was at least 10 times more efficient than Couch’s method at collecting cyclopoid and harpacticoid copepods from sediments. The new method requires very little supervision and there is no requirement for a particular intensity of light. This method can increase the collection of large numbers of photopositive copepods in aquatic systems, and thereby facilitate the inclusion of this important component into future food web studies, particularly those using biomarkers such as stable isotopes or fatty acids.


Genome ◽  
2016 ◽  
Vol 59 (9) ◽  
pp. 603-628 ◽  
Author(s):  
Tomas Roslin ◽  
Sanna Majaneva

By depicting who eats whom, food webs offer descriptions of how groupings in nature (typically species or populations) are linked to each other. For asking questions on how food webs are built and work, we need descriptions of food webs at different levels of resolution. DNA techniques provide opportunities for highly resolved webs. In this paper, we offer an exposé of how DNA-based techniques, and DNA barcodes in particular, have recently been used to construct food web structure in both terrestrial and aquatic systems. We highlight how such techniques can be applied to simultaneously improve the taxonomic resolution of the nodes of the web (i.e., the species), and the links between them (i.e., who eats whom). We end by proposing how DNA barcodes and DNA information may allow new approaches to the construction of larger interaction webs, and overcome some hurdles to achieving adequate sample size. Most importantly, we propose that the joint adoption and development of these techniques may serve to unite approaches to food web studies in aquatic and terrestrial systems—revealing the extent to which food webs in these environments are structured similarly to or differently from each other, and how they are linked by dispersal.


2013 ◽  
Vol 28 (5) ◽  
pp. 759-769 ◽  
Author(s):  
Naoto F. Ishikawa ◽  
Fujio Hyodo ◽  
Ichiro Tayasu
Keyword(s):  
Food Web ◽  

Zygote ◽  
1999 ◽  
Vol 8 (S1) ◽  
pp. S77-S78
Author(s):  
Yukiko Sato ◽  
Ikuko Yazaki

Larvae of marine invertebrates undergo metamorphosis in response to environmental cues (Chia & Burke, 1978). In sea urchins, free fatty acids (Kitamura et al., 1993), dibromomethane (Taniguchi et al., 1994), pheromonal peptides (Burke, 1984) and L-glutamine (Yazaki & Harashima, 1994; Yazaki, 1995) have been known as metamorphosis-inducing substances. The mechanisms by which cells respond to these cues and how the larval tissues are absorbed have not been clear, however. In the present study, we used L-glutamine (Gln) and a natural cue, green algae (Ulvella sp.), to induce metamorphosis of Hemicentrotus pulcherrimus and Anthocidaris crassispina, and investigated the intracellular changes during metamorphosis.After being subjected to 10−5–10−3 M Gln for 10–24 h, larvae cease swimming, settle, begin to retract their larval arms, extrude the primary podia and finally evert their echinus rudiment (ER). In H. pulcherrimus, larvae retracted their arms from 6 h to 24 h after the start of Gln treatment and then everted the ER. A. crassispina larvae underwent similar processes to those of H. pulcherrimus. The larval surface is composed of squamous epithelium and columnar epithelium. The epithelium of the ciliary bands or epaulets is columnar.In the squamous epithelium, the nuclear chromatin in the larval arms and body, and in the oesophagus, markedly condensed after treatment with Gln for 24 h. Electron microscopy revealed swelling of both nuclei and mitochondria, while their membranes seemed to be intact. In the cytoplasm, lipid-like structures and electron-dense substances appeared. A further 24 h after Gln treatment, the chromatin condensation had progressed. Most nuclei in which chromatin had condensed were positive to the TUNEL assay, which detects DNA fragmentation. These results suggest that cell death in the squamous epithelium is apoptotic rather than necrotic.


Sign in / Sign up

Export Citation Format

Share Document