Simulation of human thermoregulation during water immersion: Application to an aircraft cabin water-spray-system

1997 ◽  
Vol 25 (4) ◽  
pp. 620-634 ◽  
Author(s):  
Matthew B. Wolf ◽  
Robert P. Garner
1991 ◽  
Author(s):  
Richard G. Hill ◽  
Constantine P. Sarkos ◽  
Timothy R. Marker

Alloy Digest ◽  
1984 ◽  
Vol 33 (12) ◽  

Abstract Alloy Steel 3.5Ni-1.8Cr-0.4Mo-0.1V is highly suitable for massive components, usually more than four inches thick. It has high hardenability which in a water-spray or water-immersion quench contributes to the formation of sizeable amounts of martensite along with some bainite, and possibly a little ferrite. On tempering, the martensite adds to toughness and lowers the temperature of transition from tough to brittle failure. This steel is suitable for intermediate-duty and heavy-duty generator and turbine rotors, large axles and shafts, large gears and ship forgings. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: SA-404. Producer or source: Alloy steel mills and foundries.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Mojtaba Nateqi ◽  
Mehran Rajabi Zargarabadi ◽  
Roohollah Rafee

AbstractIn this study, a spray cooling system is experimentally investigated to increase the photovoltaic panel efficiency. Cooling of photovoltaic panels is one of the important parameters that affects the PV panel performance. In this experiment the effects of spray angle, nozzles to PV panel distance, number of nozzles, and pulsating water spray on the PV panel performance are investigated. For this purpose, an experimental setup was made. The spray angles varied from 15° to 50°. The comparison between the spray angles shows that by decreasing the spray angle to 15° increases the electrical efficiency of PV panel to 19.78% and simultaneously the average PV panel temperature decreases from 64 (for non-cooled PV) to 24 °C. Also, nozzle to PV panel distance was changed from 10 to 50 cm. The best result was obtained for the lowest distance by 25.86% increase in power output. Study of various frequency also show that due to the surface evaporation and the intensity of the radiation, increasing the water spraying frequency can increase or decrease the electrical efficiency. The On–Off water spray system results show that the maximum increase in efficiency was obtained with frequency of 0.2 Hz which it was 16.84%. Water consumption also decreased to half.


2013 ◽  
Vol 634-638 ◽  
pp. 1608-1611
Author(s):  
Ji Wu Yuan ◽  
Xiang Di Zhao ◽  
Zheng Wang

Traditional assessment techniques can't predict the explosion with effects of water spray system. A method of explosion simulation which based on FLACS software for Petrochemical plant with water spray were used for simulating the explosion risk of a coal gasification company’s plant. Simulation results indicate that the water spray system can significantly weaken the devices exploded consequences. This method can be used for fire protection system design and optimization of layout for petrochemical plants.


1974 ◽  
Vol 4 (2) ◽  
pp. 165-182 ◽  
Author(s):  
N.C. Miller ◽  
R.C. Seagrave

Sign in / Sign up

Export Citation Format

Share Document