A model for cell type-specific differential gene expression during heterocyst development and the constitution of aerobic nitrogen fixation ability inAnabaena sp. strain PCC 7120

1996 ◽  
Vol 21 (3) ◽  
pp. 397-411 ◽  
Author(s):  
Shree Kumar Apte ◽  
G. Nareshkumar
2020 ◽  
Author(s):  
Fumihiko Takeuchi ◽  
Norihiro Kato

Abstract Background: Epigenome-wide association studies (EWAS) and differential gene expression analyses are generally performed on tissue samples, which consist of multiple cell types. Cell-type-specific effects of a trait, such as disease, on the omics expression are of interest but difficult or costly to measure experimentally. By measuring omics data for the bulk tissue, cell type composition of a sample can be inferred statistically. Subsequently, cell-type-specific effects are estimated by linear regression that includes terms representing the interaction between the cell type proportions and the trait. This approach involves two issues, scaling and multicollinearity.Results: First, although cell composition is analyzed in linear scale, differential methylation/expression is analyzed suitably in the logit/log scale. To simultaneously analyze two scales, we developed nonlinear regression. Second, we show that the interaction terms are highly collinear, which is obstructive to ordinary regression. To cope with the multicollinearity, we applied ridge regularization. In simulated and real data, the improvement was modest by nonlinear regression and substantial by ridge regularization. Conclusion: Nonlinear ridge regression performed cell-type-specific association test on bulk omics data more robustly than previous methods. The omicwas package for R implements nonlinear ridge regression for cell-type-specific EWAS, differential gene expression and QTL analyses. The software is freely available from https://github.com/fumi-github/omicwas


2020 ◽  
Author(s):  
Fumihiko Takeuchi ◽  
Norihiro Kato

Abstract Background: Epigenome-wide association studies (EWAS) and differential gene expression analyses are generally performed on tissue samples, which consist of multiple cell types. Cell-type-specific effects of a trait, such as disease, on the omics expression are of interest but difficult or costly to measure experimentally. By measuring omics data for the bulk tissue, cell type composition of a sample can be inferred statistically. Subsequently, cell-type-specific effects are estimated by linear regression that includes terms representing the interaction between the cell type proportions and the trait. This approach involves two issues, scaling and multicollinearity.Results: First, although cell composition is analyzed in linear scale, differential methylation/expression is analyzed suitably in the logit/log scale. To simultaneously analyze two scales, we applied nonlinear regression. Second, we show that the interaction terms are highly collinear, which is obstructive to ordinary regression. To cope with the multicollinearity, we applied ridge regularization. In simulated data, nonlinear ridge regression attained well-balanced sensitivity, specificity and precision. In real data, nonlinear ridge regression detected signals consistently over the examined cases.Conclusion: Nonlinear ridge regression performed cell-type-specific association test on bulk omics data more robustly than previous methods. The omicwas package for R implements nonlinear ridge regression for cell-type-specific EWAS, differential gene expression and QTL analyses. The software is freely available from https://github.com/fumi-github/omicwas


2020 ◽  
Author(s):  
Fumihiko Takeuchi ◽  
Norihiro Kato

AbstractBackgroundEpigenome-wide association studies (EWAS) and differential gene expression analyses are generally performed on tissue samples, which consist of multiple cell types. Cell-type-specific effects of a trait, such as disease, on the omics expression are of interest but difficult or costly to measure experimentally. By measuring omics data for the bulk tissue, cell type composition of a sample can be inferred statistically. Subsequently, cell-type-specific effects are estimated by linear regression that includes terms representing the interaction between the cell type proportions and the trait. This approach involves two issues, scaling and multicollinearity.ResultsFirst, although cell composition is analyzed in linear scale, differential methylation/expression is analyzed suitably in the logit/log scale. To simultaneously analyze two scales, we applied nonlinear regression. Second, we show that the interaction terms are highly collinear, which is obstructive to ordinary regression. To cope with the multicollinearity, we applied ridge regularization. In simulated data, nonlinear ridge regression attained well-balanced sensitivity, specificity and precision. Marginal model attained the lowest precision and highest sensitivity and was the only algorithm to detect weak signal in real data.ConclusionNonlinear ridge regression performed cell-type-specific association test on bulk omics data with well-balanced performance. The omicwas package for R implements nonlinear ridge regression for cell-type-specific EWAS, differential gene expression and QTL analyses. The software is freely available from https://github.com/fumi-github/omicwas


2021 ◽  
Author(s):  
Fumihiko Takeuchi ◽  
Norihiro Kato

Abstract Background: Epigenome-wide association studies (EWAS) and differential gene expression analyses are generally performed on tissue samples, which consist of multiple cell types. Cell-type-specific effects of a trait, such as disease, on the omics expression are of interest but difficult or costly to measure experimentally. By measuring omics data for the bulk tissue, cell type composition of a sample can be inferred statistically. Subsequently, cell-type-specific effects are estimated by linear regression that includes terms representing the interaction between the cell type proportions and the trait. This approach involves two issues, scaling and multicollinearity.Results: First, although cell composition is analyzed in linear scale, differential methylation/expression is analyzed suitably in the logit/log scale. To simultaneously analyze two scales, we applied nonlinear regression. Second, we show that the interaction terms are highly collinear, which is obstructive to ordinary regression. To cope with the multicollinearity, we applied ridge regularization. In simulated data, nonlinear ridge regression attained well-balanced sensitivity, specificity and precision. Marginal model attained the lowest precision and highest sensitivity and was the only algorithm to detect weak signal in real data.Conclusion: Nonlinear ridge regression performed cell-type-specific association test on bulk omics data with well-balanced performance. The omicwas package for R implements nonlinear ridge regression for cell-type-specific EWAS, differential gene expression and QTL analyses. The software is freely available from https://github.com/fumi-github/omicwas


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fumihiko Takeuchi ◽  
Norihiro Kato

Abstract Background Epigenome-wide association studies (EWAS) and differential gene expression analyses are generally performed on tissue samples, which consist of multiple cell types. Cell-type-specific effects of a trait, such as disease, on the omics expression are of interest but difficult or costly to measure experimentally. By measuring omics data for the bulk tissue, cell type composition of a sample can be inferred statistically. Subsequently, cell-type-specific effects are estimated by linear regression that includes terms representing the interaction between the cell type proportions and the trait. This approach involves two issues, scaling and multicollinearity. Results First, although cell composition is analyzed in linear scale, differential methylation/expression is analyzed suitably in the logit/log scale. To simultaneously analyze two scales, we applied nonlinear regression. Second, we show that the interaction terms are highly collinear, which is obstructive to ordinary regression. To cope with the multicollinearity, we applied ridge regularization. In simulated data, nonlinear ridge regression attained well-balanced sensitivity, specificity and precision. Marginal model attained the lowest precision and highest sensitivity and was the only algorithm to detect weak signal in real data. Conclusion Nonlinear ridge regression performed cell-type-specific association test on bulk omics data with well-balanced performance. The omicwas package for R implements nonlinear ridge regression for cell-type-specific EWAS, differential gene expression and QTL analyses. The software is freely available from https://github.com/fumi-github/omicwas


2021 ◽  
Author(s):  
Dylan M Cable ◽  
Evan Murray ◽  
Vignesh Shanmugam ◽  
Simon Zhang ◽  
Michael Z Diao ◽  
...  

Spatial transcriptomics enables spatially resolved gene expression measurements at near single-cell resolution. There is a pressing need for computational tools to enable the detection of genes that are differentially expressed across tissue context for cell types of interest. However, changes in cell type composition across space and the fact that measurement units often detect transcripts from more than one cell type introduce complex statistical challenges. Here, we introduce a statistical method, Robust Cell Type Differential Expression (RCTDE), that estimates cell type-specific patterns of differential gene expression while accounting for localization of other cell types. By using general log-linear models, we provide a unified framework for defining and identifying gene expression changes for a wide-range of relevant contexts: changes due to pathology, anatomical regions, physical proximity to specific cell types, and cellular microenvironment. Furthermore, our approach enables statistical inference across multiple samples and replicates when such data is available. We demonstrate, through simulations and validation experiments on Slide-seq and MERFISH datasets, that our approach accurately identifies cell type-specific differential gene expression and provides valid uncertainty quantification. Lastly, we apply our method to characterize spatially-localized tissue changes in the context of disease. In an Alzheimer's mouse model Slide-seq dataset, we identify plaque-dependent patterns of cellular immune activity. We also find a putative interaction between tumor cells and myeloid immune cells in a Slide-seq tumor dataset. We make our RCTDE method publicly available as part of the open source R package https://github.com/dmcable/spacexr.


2019 ◽  
Author(s):  
Kelly M. Bakulski ◽  
John F. Dou ◽  
Robert C. Thompson ◽  
Christopher Lee ◽  
Lauren Y. Middleton ◽  
...  

AbstractBackgroundLead (Pb) exposure is ubiquitous and has permanent developmental effects on childhood intelligence and behavior and adulthood risk of dementia. The hippocampus is a key brain region involved in learning and memory, and its cellular composition is highly heterogeneous. Pb acts on the hippocampus by altering gene expression, but the cell type-specific responses are unknown.ObjectiveExamine the effects of perinatal Pb treatment on adult hippocampus gene expression, at the level of individual cells, in mice.MethodsIn mice perinatally exposed to control water (n=4) or a human physiologically-relevant level (32 ppm in maternal drinking water) of Pb (n=4), two weeks prior to mating through weaning, we tested for gene expression and cellular differences in the hippocampus at 5-months of age. Analysis was performed using single cell RNA-sequencing of 5,258 cells from the hippocampus by 10x Genomics Chromium to 1) test for gene expression differences averaged across all cells by treatment; 2) compare cell cluster composition by treatment; and 3) test for gene expression and pathway differences within cell clusters by treatment.ResultsGene expression patterns revealed 12 cell clusters in the hippocampus, mapping to major expected cell types (e.g. microglia, astrocytes, neurons, oligodendrocytes). Perinatal Pb treatment was associated with 12.4% more oligodendrocytes (P=4.4×10−21) in adult mice. Across all cells, differential gene expression analysis by Pb treatment revealed cluster marker genes. Within cell clusters, differential gene expression with Pb treatment (q<0.05) was observed in endothelial, microglial, pericyte, and astrocyte cells. Pathways up-regulated with Pb treatment were protein folding in microglia (P=3.4×10−9) and stress response in oligodendrocytes (P=3.2×10−5).ConclusionBulk tissue analysis may be confounded by changes in cell type composition and may obscure effects within vulnerable cell types. This study serves as a biological reference for future single cell studies of toxicant or neuronal complications, to ultimately characterize the molecular basis by which Pb influences cognition and behavior.


2020 ◽  
Author(s):  
Russell Littman ◽  
Zachary Hemminger ◽  
Robert Foreman ◽  
Douglas Arneson ◽  
Guanglin Zhang ◽  
...  

AbstractRNA hybridization based spatial transcriptomics provides unparalleled detection sensitivity. However, inaccuracies in segmentation of image volumes into cells cause misassignment of mRNAs which is a major source of errors. Here we develop JSTA, a computational framework for Joint cell Segmentation and cell Type Annotation that utilizes prior knowledge of cell-type specific gene expression. Simulation results show that leveraging existing cell type taxonomy increases RNA assignment accuracy by more than 45%. Using JSTA we were able to classify cells in the mouse hippocampus into 133 (sub)types revealing the spatial organization of CA1, CA3, and Sst neuron subtypes. Analysis of within cell subtype spatial differential gene expression of 80 candidate genes identified 43 with statistically significant spatial differential gene expression across 61 (sub)types. Overall, our work demonstrates that known cell type expression patterns can be leveraged to improve the accuracy of RNA hybridization based spatial transcriptomics while providing highly granular cell (sub)type information. The large number of newly discovered spatial gene expression patterns substantiates the need for accurate spatial transcriptomics measurements that can provide information beyond cell (sub)type labels.


2019 ◽  
Author(s):  
Gonzalo S. Nido ◽  
Fiona Dick ◽  
Lilah Toker ◽  
Kjell Petersen ◽  
Guido Alves ◽  
...  

AbstractBackgroundThe etiology of Parkinson’s disease (PD) is largely unknown. Genome-wide transcriptomic studies in bulk brain tissue have identified several molecular signatures associated with the disease. While these studies have the potential to shed light into the pathogenesis of PD, they are also limited by two major confounders: RNA post mortem degradation and heterogeneous cell type composition of bulk tissue samples. We performed RNA sequencing following ribosomal RNA depletion in the prefrontal cortex of 49 individuals from two independent case-control cohorts. Using cell-type specific markers, we estimated the cell-type composition for each sample and included this in our analysis models to compensate for the variation in cell-type proportions.ResultsRibosomal RNA depletion results in substantially more even transcript coverage, compared to poly(A) capture, in post mortem tissue. Moreover, we show that cell-type composition is a major confounder of differential gene expression analysis in the PD brain. Correcting for cell-type proportions attenuates numerous transcriptomic signatures that have been previously associated with PD, including vesicle trafficking, synaptic transmission, immune and mitochondrial function. Conversely, pathways related to endoplasmic reticulum, lipid oxidation and unfolded protein response are strengthened and surface as the top differential gene expression signatures in the PD prefrontal cortex.ConclusionsDifferential gene expression signatures in PD bulk brain tissue are significantly confounded by underlying differences in cell-type composition. Modeling cell-type heterogeneity is crucial in order to unveil transcriptomic signatures that represent regulatory changes in the PD brain and are, therefore, more likely to be associated with underlying disease mechanisms.


2018 ◽  
Author(s):  
Idan Nurick ◽  
Ron Shamir ◽  
Ran Elkon

AbstractBackgroundOur appreciation of the critical role of the 3D organization of the genome in gene regulation is steadily increasing. Recent 3C-based deep sequencing techniques elucidated a hierarchy of structures that underlie the spatial organization of the genome in the nucleus. At the top of this hierarchical organization are chromosomal territories and the megabase-scale A/B compartments that correlate with transcriptional activity within cells. Below them are the relatively cell-type invariant topologically associated domains (TADs), characterized by high frequency of physical contacts between loci within the same TAD and are assumed to function as regulatory units. Within TADs, chromatin loops bring enhancers and target promoters to close spatial proximity. Yet, we still have only rudimentary understanding how differences in chromatin organization between different cell types affect cell-type specific gene expression programs that are executed under basal and challenged conditions.ResultsHere, we carried out a large-scale meta-analysis that integrated Hi-C data from thirteen different cell lines and dozens of ChIP-seq and RNA-seq datasets measured on these cells, either under basal conditions or after treatment. Pairwise comparisons between cell lines demonstrated the strong association between modulation of A/B compartmentalization, differential gene expression and transcription factor (TF) binding events. Furthermore, integrating the analysis of transcriptomes of different cell lines in response to various challenges, we show that 3D organization of cells under basal conditions constrains not only gene expression programs and TF binding profiles that are active under the basal condition but also those induced in response to treatment.ConclusionsOur results further elucidate the role of dynamic genome organization in regulation of differential gene expression between different cell types, and indicate the impact of intra-TAD enhancer-promoter interactions that are established under basal conditions on both the basal and treatment-induced gene expression programs.


Sign in / Sign up

Export Citation Format

Share Document