Charged-particle multiplicity at mid-rapidity in Au-Au collisions at relativistic heavy-ion collider

Pramana ◽  
2003 ◽  
Vol 60 (5) ◽  
pp. 983-986 ◽  
Author(s):  
D. Silvermyr ◽  
2014 ◽  
Vol 23 (04) ◽  
pp. 1450024 ◽  
Author(s):  
Raghunath Sahoo ◽  
Aditya Nath Mishra

We study the charged particle and transverse energy production mechanism from AGS, SPS, Relativistic Heavy-Ion Collider (RHIC) to Large Hadron Collider (LHC) energies in the framework of nucleon and quark participants. At RHIC and LHC energies, the number of nucleons-normalized charged particle and transverse energy density in pseudorapidity, which shows a monotonic rise with centrality, turns out to be an almost centrality independent scaling behavior when normalized to the number of participant quarks. A universal function which is a combination of logarithmic and power-law, describes well the charged particle and transverse energy production both at nucleon and quark participant level for the whole range of collision energies. Energy dependent production mechanisms are discussed both for nucleonic and partonic level. Predictions are made for the pseudorapidity densities of transverse energy, charged particle multiplicity and their ratio (the barometric observable, [Formula: see text]) at mid-rapidity for Pb + Pb collisions at [Formula: see text]. A comparison with models based on gluon saturation and statistical hadron gas is made for the energy dependence of [Formula: see text].


2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
Ranbir Singh ◽  
Lokesh Kumar ◽  
Pawan Kumar Netrakanti ◽  
Bedangadas Mohanty

We review a subset of experimental results from the heavy-ion collisions at the Large Hadron Collider (LHC) facility at CERN. Excellent consistency is observed across all the experiments at the LHC (at center of mass energysNN=2.76 TeV) for the measurements such as charged particle multiplicity density, azimuthal anisotropy coefficients, and nuclear modification factor of charged hadrons. Comparison to similar measurements from the Relativistic Heavy Ion Collider (RHIC) at lower energy (sNN=200 GeV) suggests that the system formed at LHC has a higher energy density and larger system size and lives for a longer time. These measurements are compared to model calculations to obtain physical insights on the properties of matter created at the RHIC and LHC.


Particles ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 114-122
Author(s):  
Yuri Sinyukov ◽  
Musfer Adzhymambetov ◽  
Volodymyr Shapoval

The paper is devoted to the theoretical study of particle production in the Large Hadron Collider (LHC) Xe+Xe collisions at the energy s N N = 5 . 44 TeV. The description of common bulk observables, such as mean charged particle multiplicity, particle number ratios, and p T spectra, is obtained within the integrated hydrokinetic model, and the simulation results are compared to the corresponding experimental points. The comparison shows that the model is able to adequately describe the measured data for the considered collision type, similarly as for the cases of Pb+Pb LHC collisions and top Relativistic Heavy Ion Collider (RHIC) energy Au+Au collisions, analyzed in our previous works.


2017 ◽  
Vol 32 (12) ◽  
pp. 1750060
Author(s):  
Sadhana Dash ◽  
Basanta K. Nandi ◽  
Ranjit Nayak ◽  
Ashutosh Kumar Pandey ◽  
Priyanka Sett

The centrality dependence of the charged-particle multiplicity densities [Formula: see text] and transverse energy densities [Formula: see text] are investigated using the two-component Glauber approach for broad range of energies in heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC). A comprehensive study shows that the data is well-described within the framework of two-component model which includes the contribution of “soft processes” and “hard processes” for different centrality classes and energies. The data at two different energies are compared by means of the ratio of [Formula: see text] (and [Formula: see text]) to see the interplay of energy scaling and relative contribution of hard processes.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Sushanta Tripathy ◽  
Ashish Bisht ◽  
Raghunath Sahoo ◽  
Arvind Khuntia ◽  
Malavika Panikkassery Salvan

Recent observations of QGP-like conditions in high-multiplicity pp collisions from ALICE experiment at the LHC warrant an introspection whether to use pp collisions as a baseline measurement to characterize heavy-ion collisions for the possible formation of a Quark-Gluon Plasma. A double differential study of the particle spectra and thermodynamics of the produced system as a function of charged-particle multiplicity and transverse spherocity in pp collisions would shed light on the underlying event dynamics. Transverse spherocity, one of the event shape observables, allows to separate the events in terms of jetty and isotropic events. We analyse the identified particle transverse momentum ( p T ) spectra as a function of charged-particle multiplicity and transverse spherocity using Tsallis nonextensive statistics and Boltzmann-Gibbs Blast-Wave (BGBW) model in pp collisions at s = 13   TeV using PYTHIA8 event generator. The extracted parameters such as temperature ( T ), radial flow ( β ), and nonextensive parameter ( q ) are shown as a function of charged-particle multiplicity for different spherocity classes. We observe that the isotropic events approach thermal equilibrium while the jetty ones remain far from equilibrium. We argue that, while studying the QGP-like conditions in small systems, one should separate the isotropic events from the spherocity-integrated events, as the production dynamics are different.


Author(s):  
S. Acharya ◽  
◽  
D. Adamová ◽  
S. P. Adhya ◽  
A. Adler ◽  
...  

Abstract The production rates and the transverse momentum distribution of strange hadrons at mid-rapidity ($$\left| y\right| < 0.5$$y<0.5) are measured in proton-proton collisions at $$\sqrt{s}$$s = 13 TeV as a function of the charged particle multiplicity, using the ALICE detector at the LHC. The production rates of $$\mathrm{K}^{0}_{S}$$KS0, $$\Lambda $$Λ, $$\Xi $$Ξ, and $$\Omega $$Ω increase with the multiplicity faster than what is reported for inclusive charged particles. The increase is found to be more pronounced for hadrons with a larger strangeness content. Possible auto-correlations between the charged particles and the strange hadrons are evaluated by measuring the event-activity with charged particle multiplicity estimators covering different pseudorapidity regions. When comparing to lower energy results, the yields of strange hadrons are found to depend only on the mid-rapidity charged particle multiplicity. Several features of the data are reproduced qualitatively by general purpose QCD Monte Carlo models that take into account the effect of densely-packed QCD strings in high multiplicity collisions. However, none of the tested models reproduce the data quantitatively. This work corroborates and extends the ALICE findings on strangeness production in proton-proton collisions at 7 TeV.


Sign in / Sign up

Export Citation Format

Share Document