Time-dependent electron speed distribution functions in an electric field in a gas

1971 ◽  
Vol 4 (2) ◽  
pp. 262-274 ◽  
Author(s):  
G. L. Braglia ◽  
L. Ferrari
1982 ◽  
Vol 60 (12) ◽  
pp. 1717-1719
Author(s):  
P. U. Arifov ◽  
G. I. Zhuravleva

The present article combines our earlier separate calculations of elastic scattering cross sections, annihilation parameters, and speed distribution functions of positrons slowing down in noble gases for the simultaneous interpretation of experimental data of both beam and drift experiments. Here we present the results on the calculations of phase shifts, annihilation parameter Z(k), speed distribution functions, and Zeff(F).


2017 ◽  
Vol 767 ◽  
pp. 431-436 ◽  
Author(s):  
Bo Zhang ◽  
Zhi-meng Zhang ◽  
Wei Hong ◽  
Shu-Kai He ◽  
Jian Teng ◽  
...  

Author(s):  
C. Boone ◽  
M. Fuest ◽  
K. Wellmerling ◽  
S. Prakash

Nanofluidic field effect devices feature a gate electrode embedded in the nanochannel wall. The gate electrode creates local variation in the electric field allowing active, tunable control of ionic transport. Tunable control over ionic transport through nanofluidic networks is essential for applications including artificial ion channels, ion pumps, ion separation, and biosensing. Using DC excitation at the gate, experiments have demonstrated multiple current states in the nanochannel, including the ability to switch off the measured current; however, experimental evaluation of transient signals at the gate electrode has not been explored. Modeling results have shown ion transport at the nanoscale has known time scales for diffusion, electromigration, and convection. This supports the evidence detailed here that use of a time-dependent signal to create local perturbation in the electric field can be used for systematic manipulation of ionic transport in nanochannels. In this report, sinusoidal waveforms of various frequencies were compared against DC excitation on the gate electrode. The ionic transport was quantified by measuring the current through the nanochannels as a function of applied axial and gate potentials. It was found that time varying signals have a higher degree of modulation than a VRMS matched DC signal.


1973 ◽  
Vol 51 (24) ◽  
pp. 2604-2611 ◽  
Author(s):  
H. E. Wilhelm

Based on the Lenard–Balescu equation, the interaction integral for the intercomponent momentum transfer in a two-component, collisionless plasma is evaluated in closed form. The distribution functions of the electrons and ions are represented in the form of nonisothermal, displaced Max wellians corresponding to the 5-moment approximation. As an application, the transport of electrical current in an electric field is discussed for infrasonic up to sonic electron–ion drift velocities.


Sign in / Sign up

Export Citation Format

Share Document