Finite-action solutions of higher-order yang-mills-higgs theory in four dimensions

1986 ◽  
Vol 92 (1) ◽  
pp. 107-115 ◽  
Author(s):  
J. Burzlaff ◽  
D. H. Tchrakian
1988 ◽  
Vol 03 (10) ◽  
pp. 2349-2369 ◽  
Author(s):  
A. WIEDEMANN ◽  
H.J.W. MÜLLER-KIRSTEN ◽  
D.H. TCHRAKIAN

Motivated by the study of classical finite-action field configurations of higher order Yang-Mills-Higgs theories, we construct the Lagrangian of a scalar theory in one space and one time dimensions which can serve as a relatively simple model for the investigation of the properties of theories with finite energy or action classical configurations. The condition of stability of the classical configuration, the zero mode and the significance of the latter in connection with constraints which ensure the existence of the Green’s function, are studied in detail. It is then shown how a Schrödinger equation can be established and solved whose eigenfunctionals determine the probability of field fluctuations in the neighborhood of the classical configuration.


Author(s):  
PAN ZHANG

Abstract In this paper, we define a family of functionals generalizing the Yang–Mills–Higgs functionals on a closed Riemannian manifold. Then we prove the short-time existence of the corresponding gradient flow by a gauge-fixing technique. The lack of a maximum principle for the higher order operator brings us a lot of inconvenience during the estimates for the Higgs field. We observe that the $L^2$ -bound of the Higgs field is enough for energy estimates in four dimensions and we show that, provided the order of derivatives appearing in the higher order Yang–Mills–Higgs functionals is strictly greater than one, solutions to the gradient flow do not hit any finite-time singularities. As for the Yang–Mills–Higgs k-functional with Higgs self-interaction, we show that, provided $\dim (M)<2(k+1)$ , for every smooth initial data the associated gradient flow admits long-time existence. The proof depends on local $L^2$ -derivative estimates, energy estimates and blow-up analysis.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
I. L. Buchbinder ◽  
E. A. Ivanov ◽  
V. A. Ivanovskiy

Abstract We develop a novel bi-harmonic $$ \mathcal{N} $$ N = 4 superspace formulation of the $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills theory (SYM) in four dimensions. In this approach, the $$ \mathcal{N} $$ N = 4 SYM superfield constraints are solved in terms of on-shell $$ \mathcal{N} $$ N = 2 harmonic superfields. Such an approach provides a convenient tool of constructing the manifestly $$ \mathcal{N} $$ N = 4 supersymmetric invariants and further rewriting them in $$ \mathcal{N} $$ N = 2 harmonic superspace. In particular, we present $$ \mathcal{N} $$ N = 4 superfield form of the leading term in the $$ \mathcal{N} $$ N = 4 SYM effective action which was known previously in $$ \mathcal{N} $$ N = 2 superspace formulation.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Arshia Momeni ◽  
Justinas Rumbutis ◽  
Andrew J. Tolley

Abstract We consider the double copy of massive Yang-Mills theory in four dimensions, whose decoupling limit is a nonlinear sigma model. The latter may be regarded as the leading terms in the low energy effective theory of a heavy Higgs model, in which the Higgs has been integrated out. The obtained double copy effective field theory contains a massive spin-2, massive spin-1 and a massive spin-0 field, and we construct explicitly its interacting Lagrangian up to fourth order in fields. We find that up to this order, the spin-2 self interactions match those of the dRGT massive gravity theory, and that all the interactions are consistent with a Λ3 = (m2MPl)1/3 cutoff. We construct explicitly the Λ3 decoupling limit of this theory and show that it is equivalent to a bi-Galileon extension of the standard Λ3 massive gravity decoupling limit theory. Although it is known that the double copy of a nonlinear sigma model is a special Galileon, the decoupling limit of massive Yang-Mills theory is a more general Galileon theory. This demonstrates that the decoupling limit and double copy procedures do not commute and we clarify why this is the case in terms of the scaling of their kinematic factors.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Hongxiang Tian ◽  
Enze Gong ◽  
Chongsi Xie ◽  
Yi-Jian Du

Abstract The recursive expansion of tree level multitrace Einstein-Yang-Mills (EYM) amplitudes induces a refined graphic expansion, by which any tree-level EYM amplitude can be expressed as a summation over all possible refined graphs. Each graph contributes a unique coefficient as well as a proper combination of color-ordered Yang-Mills (YM) amplitudes. This expansion allows one to evaluate EYM amplitudes through YM amplitudes, the latter have much simpler structures in four dimensions than the former. In this paper, we classify the refined graphs for the expansion of EYM amplitudes into N k MHV sectors. Amplitudes in four dimensions, which involve k + 2 negative-helicity particles, at most get non-vanishing contribution from graphs in N k′ (k′ ≤ k) MHV sectors. By the help of this classification, we evaluate the non-vanishing amplitudes with two negative-helicity particles in four dimensions. We establish a correspondence between the refined graphs for single-trace amplitudes with $$ \left({g}_i^{-},{g}_j^{-}\right) $$ g i − g j − or $$ \left({h}_i^{-},{g}_j^{-}\right) $$ h i − g j − configuration and the spanning forests of the known Hodges determinant form. Inspired by this correspondence, we further propose a symmetric formula of double-trace amplitudes with $$ \left({g}_i^{-},{g}_j^{-}\right) $$ g i − g j − configuration. By analyzing the cancellation between refined graphs in four dimensions, we prove that any other tree amplitude with two negative-helicity particles has to vanish.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Jean-Nicolas Lang ◽  
Stefano Pozzorini ◽  
Hantian Zhang ◽  
Max F. Zoller

Abstract Scattering amplitudes in D dimensions involve particular terms that originate from the interplay of UV poles with the (D − 4)-dimensional parts of loop numerators. Such contributions can be controlled through a finite set of process-independent rational counterterms, which make it possible to compute loop amplitudes with numerical tools that construct the loop numerators in four dimensions. Building on a recent study [1] of the general properties of two-loop rational counterterms, in this paper we investigate their dependence on the choice of renormalisation scheme. We identify a nontrivial form of scheme dependence, which originates from the interplay of mass and field renormalisation with the (D−4)-dimensional parts of loop numerators, and we show that it can be controlled through a new kind of one-loop counterterms. This guarantees that the two-loop rational counterterms for a given renormalisable theory can be derived once and for all in terms of generic renormalisation constants, which can be adapted a posteriori to any scheme. Using this approach, we present the first calculation of the full set of two-loop rational counterterms in Yang-Mills theories. The results are applicable to SU(N) and U(1) gauge theories coupled to nf fermions with arbitrary masses.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Francesco Galvagno ◽  
Michelangelo Preti

Abstract We consider a family of $$ \mathcal{N} $$ N = 2 superconformal field theories in four dimensions, defined as ℤq orbifolds of $$ \mathcal{N} $$ N = 4 Super Yang-Mills theory. We compute the chiral/anti-chiral correlation functions at a perturbative level, using both the matrix model approach arising from supersymmetric localisation on the four-sphere and explicit field theory calculations on the flat space using the $$ \mathcal{N} $$ N = 1 superspace formalism. We implement a highly efficient algorithm to produce a large number of results for finite values of N , exploiting the symmetries of the quiver to reduce the complexity of the mixing between the operators. Finally the interplay with the field theory calculations allows to isolate special observables which deviate from $$ \mathcal{N} $$ N = 4 only at high orders in perturbation theory.


1987 ◽  
Vol 13 (2) ◽  
pp. 121-125 ◽  
Author(s):  
J. Burzlaff ◽  
D. O'S� ◽  
D. H. Tchrakian
Keyword(s):  

2001 ◽  
Vol 16 (16) ◽  
pp. 2747-2769 ◽  
Author(s):  
EDWARD WITTEN

The correspondence between supergravity (and string theory) on AdS space and boundary conformal field theory relates the thermodynamics of [Formula: see text] super-Yang–Mills theory in four dimensions to the thermodynamics of Schwarzschild black holes in anti-de Sitter space. In this description, quantum phenomena such as the spontaneous breaking of the center of the gauge group, magnetic confinement and the mass gap are coded in classical geometry. The correspondence makes it manifest that the entropy of a very large AdS Schwarzschild black hole must scale "holographically" with the volume of its horizon. By similar methods, one can also make a speculative proposal for the description of large N gauge theories in four dimensions without supersymmetry.


Sign in / Sign up

Export Citation Format

Share Document