Biochemical studies of the structure and function of theN-methyl-D-aspartate subtype of glutamate receptors

1999 ◽  
Vol 19 (2) ◽  
pp. 151-179 ◽  
Author(s):  
Anthone W. Dunah ◽  
Robert P. Yasuda ◽  
Jianhong Luo ◽  
Yuehua Wang ◽  
Kate L. Prybylowski ◽  
...  
2021 ◽  
Vol 13 ◽  
Author(s):  
Lina Ni

Ionotropic receptors (IRs) are a highly divergent subfamily of ionotropic glutamate receptors (iGluR) and are conserved across Protostomia, a major branch of the animal kingdom that encompasses both Ecdysozoa and Lophothrochozoa. They are broadly expressed in peripheral sensory systems, concentrated in sensory dendrites, and function in chemosensation, thermosensation, and hygrosensation. As iGluRs, four IR subunits form a functional ion channel to detect environmental stimuli. Most IR receptors comprise individual stimulus-specific tuning receptors and one or two broadly expressed coreceptors. This review summarizes the discoveries of the structure of IR complexes and the expression and function of each IR, as well as discusses the future direction for IR studies.


2010 ◽  
Vol 38 (4) ◽  
pp. 1105-1109 ◽  
Author(s):  
Daniela Hahn ◽  
Jean D. Beggs

RNA helicases are involved in many cellular processes. Pre-mRNA splicing requires eight different DExD/H-box RNA helicases, which facilitate spliceosome assembly and remodelling of the intricate network of RNA rearrangements that are central to the splicing process. Brr2p, one of the spliceosomal RNA helicases, stands out through its unusual domain architecture. In the present review we highlight the advances made by recent structural and biochemical studies that have important implications for the mechanism and regulation of Brr2p activity. We also discuss the involvement of human Brr2 in retinitis pigmentosa, a degenerative eye disease, and how its functions in splicing might connect to the molecular pathology of the disease.


2009 ◽  
Vol 37 (1) ◽  
pp. 108-113 ◽  
Author(s):  
Stuart A. MacNeill

The powerful combination of genetic and biochemical analysis has provided many key insights into the structure and function of the chromosomal DNA replication machineries of bacterial and eukaryotic cells. In contrast, in the archaea, biochemical studies have dominated, mainly due to the absence of efficient genetic systems for these organisms. This situation is changing, however, and, in this regard, the genetically tractable haloarchaea Haloferax volcanii and Halobacterium sp. NRC-1 are emerging as key models. In the present review, I give an overview of the components of the replication machinery in the haloarchaea, with particular emphasis on the protein factors presumed to travel with the replication fork.


2020 ◽  
Vol 21 (2) ◽  
pp. 437 ◽  
Author(s):  
Masamichi Nagae ◽  
Yoshiki Yamaguchi ◽  
Naoyuki Taniguchi ◽  
Yasuhiko Kizuka

Glycosylation is the most ubiquitous post-translational modification in eukaryotes. N-glycan is attached to nascent glycoproteins and is processed and matured by various glycosidases and glycosyltransferases during protein transport. Genetic and biochemical studies have demonstrated that alternations of the N-glycan structure play crucial roles in various physiological and pathological events including progression of cancer, diabetes, and Alzheimer’s disease. In particular, the formation of N-glycan branches regulates the functions of target glycoprotein, which are catalyzed by specific N-acetylglucosaminyltransferases (GnTs) such as GnT-III, GnT-IVs, GnT-V, and GnT-IX, and a fucosyltransferase, FUT8s. Although the 3D structures of all enzymes have not been solved to date, recent progress in structural analysis of these glycosyltransferases has provided insights into substrate recognition and catalytic reaction mechanisms. In this review, we discuss the biological significance and structure-function relationships of these enzymes.


Sign in / Sign up

Export Citation Format

Share Document