Scaling of differential cross-section in high energy proton-helium scattering

Pramana ◽  
1985 ◽  
Vol 25 (6) ◽  
pp. 685-694
Author(s):  
Sunachand Patel
2009 ◽  
Vol 23 (20n21) ◽  
pp. 2573-2584 ◽  
Author(s):  
A. R. MKRTCHYAN ◽  
A. A. SAHARIAN ◽  
V. V. PARAZIAN

In the present paper, we investigate coherent bremsstrahlung of high energy electrons moving in a periodically deformed single crystal with a complex base. The formula for corresponding differential cross-section is derived for an arbitrary deformation field. The conditions are discussed under which the influence of the deformation is important. The case is considered in detail when the electron enters into the crystal at small angles with respect to a crystallographic axis. It is shown that in dependence of the parameters, the presence of the deformation can either enhance or reduce the bremsstrahlung cross-section.


1992 ◽  
Vol 07 (21) ◽  
pp. 1905-1913 ◽  
Author(s):  
M. KAWASAKI ◽  
T. MAEHARA ◽  
M. YONEZAWA

Unitarity bounds for the differential cross-section of high-energy elastic hadron-hadron scattering are obtained under the constraints of fixed total cross-section σt, elasticity x, real part to imaginary part ratio ρ of the forward scattering amplitude, and forward slope b by assuming a finite interaction range. The obtained upper bound has an observed curvature structure at small momentum transfers and is nearly saturated by the experimental data of pp and [Formula: see text] scattering at −t=0−0.3 (GeV/c)2 in the energy region [Formula: see text] , if we take the interaction radius scaled as [Formula: see text].


The main features of the C. E. R. N. Intersecting Storage Rings (I. S. R.) are reviewed, together with results obtained in 1971 and 1972 on elastic scattering and total cross-sections. The main result is a 10% increase of the total proton-proton cross-section in the I. S. R. energy range. The simplest picture of high energy proton-proton scattering which emerges from this and the other data, is briefly discussed.


2001 ◽  
Vol 87 (10) ◽  
Author(s):  
E. C. Schulte ◽  
A. Ahmidouch ◽  
C. S. Armstrong ◽  
J. Arrington ◽  
R. Asaturyan ◽  
...  

1989 ◽  
Vol 67 (6) ◽  
pp. 545-561
Author(s):  
W. Del Bianco ◽  
M. Carignan

The dependence of the bremsstrahlung perpendicular and parallel triple differential cross sections and the linear polarization on the angles and energies of the incident and scattered electron and of the emitted gamma-ray has been studied in the high-energy small-angle hypothesis. The expression used for the bremsstrahlung triple differential cross section is valid in the Born approximation and for an unscreened Coulomb potential of the nucleus.


Sign in / Sign up

Export Citation Format

Share Document