Bremsstrahlung linear polarization

1989 ◽  
Vol 67 (6) ◽  
pp. 545-561
Author(s):  
W. Del Bianco ◽  
M. Carignan

The dependence of the bremsstrahlung perpendicular and parallel triple differential cross sections and the linear polarization on the angles and energies of the incident and scattered electron and of the emitted gamma-ray has been studied in the high-energy small-angle hypothesis. The expression used for the bremsstrahlung triple differential cross section is valid in the Born approximation and for an unscreened Coulomb potential of the nucleus.

2019 ◽  
Vol 79 (11) ◽  
Author(s):  
A. M. Sirunyan ◽  
◽  
A. Tumasyan ◽  
W. Adam ◽  
F. Ambrogi ◽  
...  

AbstractMeasurements are presented of the triple-differential cross section for inclusive isolated-photon+jet events in $$\mathrm{p}\mathrm{p}$$pp collisions at $$\sqrt{s} = 8$$s=8 TeV as a function of photon transverse momentum ($$p_{\mathrm {T}} ^{{\upgamma {}{}}}$$pTγ), photon pseudorapidity ($$\eta ^{{\upgamma {}{}}}$$ηγ), and jet pseudorapidity ($$\eta ^{\text {jet}}$$ηjet). The data correspond to an integrated luminosity of $$19.7{\,\text {fb}^{-1}} $$19.7fb-1 that probe a broad range of the available phase space, for $$|\eta ^{{\upgamma {}{}}} |<1.44$$|ηγ|<1.44 and $$1.57<|\eta ^{{\upgamma {}{}}} |<2.50$$1.57<|ηγ|<2.50, $$|\eta ^{\text {jet}} |<2.5$$|ηjet|<2.5, $$40< p_{\mathrm {T}} ^{{\upgamma {}{}}}<1000$$40<pTγ<1000$$\,\text {GeV}$$GeV, and jet transverse momentum, $$p_{\mathrm {T}} ^{\text {jet}}$$pTjet, > 25$$\,\text {GeV}$$GeV. The measurements are compared to next-to-leading order perturbative quantum chromodynamics calculations, which reproduce the data within uncertainties.


1996 ◽  
Vol 74 (7-8) ◽  
pp. 505-508 ◽  
Author(s):  
R. M. Finch ◽  
Á. Kövér ◽  
M. Charlton ◽  
G. Laricchia

Differential cross sections for elastic scattering and ionization in positron–argon collisions as a function of energy (40–150 eV) are reported at 60°. Of particular interest is the energy range 55–60 eV, where earlier measurements by the Detroit group found a drop in the elastic-scattering cross section of a factor of 2. This structure has been tentatively attributed to a cross channel-coupling effect with an open inelastic-scattering channel, most likely ionization. Our results indicate that ionization remains an important channel over the same energy range and only begins to decrease at an energy above 60 eV.


2019 ◽  
Vol 24 ◽  
pp. 36
Author(s):  
M. Axiotis ◽  
A. Lagoyannis ◽  
S. Fazinić ◽  
S. Harrisopulos ◽  
M. Kokkoris ◽  
...  

The application of standard-less PIGE requires the a priori knowledge of the differential cross section of the reaction used for the quantification of each detected light element. Towards this end, a lot of datasets have been published the last few years from several laboratories around the world. The discrepancies found can be resolved by applying a rigorous benchmarking procedure through the measurement of thick target yields. Such a procedure is proposed in the present paper and is applied in the case of the 19F(p,p’γ)19F reaction.


2012 ◽  
Vol 9 (3) ◽  
pp. 554-558 ◽  
Author(s):  
Baghdad Science Journal

The differential cross section for the Rhodium and Tantalum has been calculated by using the Cross Section Calculations (CSC) in range of energy(1keV-1MeV) . This calculations based on the programming of the Klein-Nashina and Rayleigh Equations. Atomic form factors as well as the coherent functions in Fortran90 language Machine proved very fast an accurate results and the possibility of application of such model to obtain the total coefficient for any elements or compounds.


2009 ◽  
Vol 23 (20n21) ◽  
pp. 2573-2584 ◽  
Author(s):  
A. R. MKRTCHYAN ◽  
A. A. SAHARIAN ◽  
V. V. PARAZIAN

In the present paper, we investigate coherent bremsstrahlung of high energy electrons moving in a periodically deformed single crystal with a complex base. The formula for corresponding differential cross-section is derived for an arbitrary deformation field. The conditions are discussed under which the influence of the deformation is important. The case is considered in detail when the electron enters into the crystal at small angles with respect to a crystallographic axis. It is shown that in dependence of the parameters, the presence of the deformation can either enhance or reduce the bremsstrahlung cross-section.


Sign in / Sign up

Export Citation Format

Share Document