Potato virus A lesions onPhysalis species

1979 ◽  
Vol 56 (8) ◽  
pp. 367-371 ◽  
Author(s):  
R. P. Singh ◽  
M. E. Drew ◽  
E. M. Smith ◽  
R. H. Bagnall
Keyword(s):  
2017 ◽  
Vol 36 (7) ◽  
pp. 1728-1738 ◽  
Author(s):  
Alexander L. Ksenofontov ◽  
Eugeny N. Dobrov ◽  
Natalia V. Fedorova ◽  
Marina V. Serebryakova ◽  
Andrei N. Prusov ◽  
...  

2004 ◽  
Vol 17 (3) ◽  
pp. 322-329 ◽  
Author(s):  
Benoît Moury ◽  
Caroline Morel ◽  
Elisabeth Johansen ◽  
Laurent Guilbaud ◽  
Sylvie Souche ◽  
...  

The recessive resistance genes pot-1 and pvr2 in Lycopersicon hirsutum and Capsicum annuum, respectively, control Potato virus Y (PVY) accumulation in the inoculated leaves. Infectious cDNA molecules from two PVY isolates differing in their virulence toward these resistances were obtained using two different strategies. Chimeras constructed with these cDNA clones showed that a single nucleotide change corresponding to an amino acid substitution (Arg119His) in the central part of the viral protein genome-linked (VPg) was involved in virulence toward the pot-1 resistance. On the other hand, 15 nucleotide changes corresponding to five putative amino acid differences in the same region of the VPg affected virulence toward the pvr21 and pvr22 resistances. Substitution models identified six and five codons within the central and C terminal parts of the VPg for PVY and for the related potyvirus Potato virus A, respectively, which undergo positive selection. This suggests that the role of the VPg-encoding region is determined by the protein and not by the viral RNA apart from its protein-encoding capacity.


1990 ◽  
Vol 128 (2) ◽  
pp. 112-124 ◽  
Author(s):  
P. M. Boonekamp ◽  
H. Pomp ◽  
G. C. Gussenhoven

2008 ◽  
Vol 89 (6) ◽  
pp. 1509-1518 ◽  
Author(s):  
Anders Hafrén ◽  
Kristiina Mäkinen

In order to be able to analyse post-translational modifications and protein interactions of viral genome-linked protein VPg taking place during potato virus A (PVA) infection, an affinity tag-based purification system was developed by inserting a sequence encoding a six-histidine and haemagglutinin (HisHA) tag to the 3′ end of the VPg coding sequence within the infectious cDNA clone of PVA. The engineered virus was fully functional and the HisHA tag-encoding sequence remained stable in the PVA genome throughout the infection process. Purification under denaturing conditions resulted in a protein sample that contained multiple VPg and NIa forms carrying post-translational modifications that altered their isoelectric points. Non-modified tagged VPg (pI 8) was a minor product in the protein sample derived from total leaf proteins, but when the replication-associated membranes were used as starting material, its relative amount increased. Further characterization demonstrated that some of the PVA VPg isoforms were modified by multiple phosphorylation events. Purity of the proteins derived from the native purifications with either of the tags was evaluated. A clearly purer VPg sample was obtained by performing tandem affinity purification utilizing both tags sequentially. NIb, CI and HC-Pro co-purified in an affinity-tagged VPg-dependent manner, indicating that the system was able to isolate protein complexes operating during PVA infection.


2011 ◽  
Vol 12 (1) ◽  
pp. 39 ◽  
Author(s):  
Nancy L. Robertson ◽  
Jeffrey Smeenk ◽  
Jodie M. Anderson

Although all three viruses are commonly found in potatoes throughout the world, this is the first report of potato viruses from Alaska to be sequenced and molecularly analyzed for comparisons with known viruses. Accepted for publication 17 January 2011. Published 9 February 2011.


Plant Disease ◽  
1998 ◽  
Vol 82 (2) ◽  
pp. 230-234 ◽  
Author(s):  
Rudra P. Singh ◽  
Mathuresh Singh

A reverse-transcription polymerase chain reaction (RT-PCR) protocol was developed for the detection of potato virus A (PVA) in dormant tubers. A 255-bp amplified product was produced using a primer pair from the P1 gene of the PVA genome. The 255-bp product was detected in nucleic acids from leaves, tubers, and purified virions and was specific to PVA as determined by Southern blot tests and detection by a PVA-specific probe. When presented with seven potato virus/strain nucleic acids and a viroid, singly and in mixed infections, the primer pair did not amplify any products. Its specificity to PVA was further demonstrated by RT-PCR detection of PVA from the known mixtures of PVA and potato virus Y samples. PVA was detected in foliage nucleic acids at a dilution of 1:1024–1:4096 and tuber nucleic acids at 1:256–1:1024. It was uniformly present in various parts of the potato tuber. PVA was detected in composite tuber samples containing a ratio of infected to healthy sap of 1:29 and was readily detected in tubers of several cultivars or breeding lines, in dormant as well as in sprouting tubers stored at 20–25°C for 4 months.


Sign in / Sign up

Export Citation Format

Share Document