Monoclonal antibodies to polysialic acid reveal epitope sharing between invasive pathogenic bacteria, differentiating cells and tumor cells

1987 ◽  
Vol 6 (4) ◽  
pp. 225-237 ◽  
Author(s):  
Dieter Bitter-Suermann ◽  
Jürgen Roth
Author(s):  
Aarushi Sharma ◽  
Grace Ramena

Issues presented by the application of monoclonal antibodies in diagnostic assays and as curative agents can make the use of such molecules cost-prohibitive and sometimes even unsafe. This has warranted the development of short single-stranded oligonucleotides known as Aptamers. The structural malleability of these short DNA or RNA nucleotide segments allows them to exist in distinct conformations. SELEX (Systematic Evolution of Ligands by Exponential Enrichment) is a multi-step process for synthesis of aptamers. Each step of this procedure is governed by a diverse set of factors that influence production efficiency, binding affinity, and specificity of the oligonucleotides. Headway in aptamer research has been made in recent years by the introduction of newer iterations of the SELEX process. A greater number of studies are now being carried out to incorporate aptamers into existing disease detection tools and therapies. An overview has been given first on the key aptamer properties and the process of their production (with its newer iterations), contrasting each of them with that of monoclonal antibodies. Possible manifold applications afforded due to unique aptamer characteristics are also discussed. A keen review is further provided on the design, development and use of fluorescent aptamers in bioimaging, sequencing or profiling, and treatment of pathogenic bacteria and tumor cells.


2021 ◽  
Vol 160 ◽  
pp. 103261
Author(s):  
Mélanie Gauthier ◽  
Caroline Laroye ◽  
Danièle Bensoussan ◽  
Cédric Boura ◽  
Véronique Decot

Hemato ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 167-181
Author(s):  
Marie Thérèse Rubio ◽  
Adèle Dhuyser ◽  
Stéphanie Nguyen

Myeloma tumor cells are particularly dependent on their microenvironment and sensitive to cellular antitumor immune response, including natural killer (NK) cells. These later are essential innate lymphocytes implicated in the control of viral infections and cancers. Their cytotoxic activity is regulated by a balance between activating and inhibitory signals resulting from the complex interaction of surface receptors and their respective ligands. Myeloma disease evolution is associated with a progressive alteration of NK cell number, phenotype and cytotoxic functions. We review here the different therapeutic approaches that could restore or enhance NK cell functions in multiple myeloma. First, conventional treatments (immunomodulatory drugs-IMids and proteasome inhibitors) can enhance NK killing of tumor cells by modulating the expression of NK receptors and their corresponding ligands on NK and myeloma cells, respectively. Because of their ability to kill by antibody-dependent cell cytotoxicity, NK cells are important effectors involved in the efficacy of anti-myeloma monoclonal antibodies targeting the tumor antigens CD38, CS1 or BCMA. These complementary mechanisms support the more recent therapeutic combination of IMids or proteasome inhibitors to monoclonal antibodies. We finally discuss the ongoing development of new NK cell-based immunotherapies, such as ex vivo expanded killer cell immunoglobulin-like receptors (KIR)-mismatched NK cells, chimeric antigen receptors (CAR)-NK cells, check point and KIR inhibitors.


Sign in / Sign up

Export Citation Format

Share Document