Utilization of honeycomb structures for a flat-plate solar collector by reduction of natural convection heat loss

KSME Journal ◽  
1989 ◽  
Vol 3 (1) ◽  
pp. 44-49
Author(s):  
Tae-Jin Kim ◽  
Chong-Bo Kim
Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1508
Author(s):  
Nagesh Babu Balam ◽  
Tabish Alam ◽  
Akhilesh Gupta ◽  
Paolo Blecich

The natural convection flow in the air gap between the absorber plate and glass cover of the flat plate solar collectors is predominantly evaluated based on the lumped capacitance method, which does not consider the spatial temperature gradients. With the recent advancements in the field of computational fluid dynamics, it became possible to study the natural convection heat transfer in the air gap of solar collectors with spatially resolved temperature gradients in the laminar regime. However, due to the relatively large temperature gradient in this air gap, the natural convection heat transfer lies in either the transitional regime or in the turbulent regime. This requires a very high grid density and a large convergence time for existing CFD methods. Higher order numerical methods are found to be effective for resolving turbulent flow phenomenon. Here we develop a non-dimensional transient numerical model for resolving the turbulent natural convection heat transfer in the air gap of a flat plate solar collector, which is fourth order accurate in both spatial and temporal domains. The developed model is validated against benchmark results available in the literature. An error of less than 5% is observed for the top heat loss coefficient parameter of the flat plate solar collector. Transient flow characteristics and various stages of natural convection flow development have been discussed. In addition, it was observed that the occurrence of flow mode transitions have a significant effect on the overall natural convection heat transfer.


Author(s):  
Saeed Moaveni ◽  
Michael C. Watts

During the past few decades, a wide range of studies have been performed to improve the performance of flat plate solar collectors by either reducing the heat loss from a collector or by increasing the amount of solar radiation absorbed by the absorber plate. Examples of these studies include adding transparent honeycomb to fill the air gap between the glazing and absorber plate to reduce convective heat loss, replacing the air in the gap by other gases such as Argon, Krypton, Xenon and Carbon Dioxide, or adding a chemical coating such as Copper Oxide to increase absorbtance and reduce the emittance of the absorber plate. While these methods improve the collector’s efficiency, they focus primarily on limiting the natural convection that occurs in the collector cavity, or on improving the optical properties of the absorber or glazing. None of these studies have addressed the problem of heat loss due to forced convection to the surrounding ambient air in any detail. Yet, research has shown that forced convection will contribute significantly to the heat loss from a collector. Windbreaks have traditionally been used to direct wind to protect farmland, and to direct wind drifts and sand dunes. Windbreaks also have been shown to provide protection for homes from winter winds which result in reduced heating costs for buildings. While windbreaks have been traditionally used for large scale applications, there is reason to believe that similar benefits can be expected for scaled down applications such as adding a windbreak along side of a flat-plate solar collector. In this paper, we examine the feasibility of using a windbreak to provide a flat plate solar collector protection from the wind in order to improve its performance. A series of experiments were performed wherein the thermal performance of two flat-plate collectors — one without a windbreaker and one with a windbreaker — were measured. The results of these experiments are reported in this paper and the need for further studies to explore different windbreak configurations is discussed.


2021 ◽  
Vol 12 (3) ◽  
pp. 216-221
Author(s):  
A. D. Gupta ◽  
◽  
Ashish Gupta ◽  
P. K. Mishra ◽  
Yashi Gupta ◽  
...  

This research investigation was undertaken in ANDUAT, Kumarganj, Ayodhya, Uttar Pradesh, India to study the numerical optimization of natural convection heat suppression in a solar flat plate collector with straight fins. Optimal characteristics of an array of thin fins attached on the absorber plat were obtained by Particle Swarm Optimization algorithm (PSOA). Free convection considered dominant in the cavity. Governing equations contained continuity; momentum and energy are discretized by finite volume method. The medium is considered incompressible, whose free convection is dominant and Boussinesq approximation is applied. A simplified model of real systems is applied with free convection. Free convection problem is solved by SIMPLER algorithm. Two confined cavities with aspect ratios 30 and 60 are considered as flat plate solar collectors. The results indicate that significant reduction on the free convection heat loss can be obtained from solar flat plate collector by using plate fins, and an optimal plate fins configuration exit for minimal natural convection heat loss for a given range of Rayleigh number. Reduction of up to a maximum of 25% at 0 inclination angle was observed in aspect ratio 30. Results showed PSOA is able to obtain characteristics of attached adiabatic fins on the absorber plate also it can obtain optimal inclination angle of cavity to decrease heat losses from solar collectors. The results obtained provide a novel approach for improving design of flat plate solar collectors for optimal performance.


2019 ◽  
Vol 16 (3) ◽  
pp. 261-270
Author(s):  
S.S. Mustafa

The performance of a flat plate solar collector with thin absorber is studied. The temperature of the absorber and its variation along the local day time is obtained by solving a heat balance equation. The temperature of the working fluid is also estimated. A published solar source functionto predict the hourly daily incident solar irradiance on horizontal surface is considered. Five absorbers of different materials: Copper, Aluminum, Stainless steel, Glass and Mica are treated. Two cooling conditions at the absorber front irradiated surface are also taken into consideration. Factors affecting its efficiency are revealed.


Sign in / Sign up

Export Citation Format

Share Document