Centrifugal pendulum vibration absorber — an alternative method of vibration reduction?

ATZ worldwide ◽  
2001 ◽  
Vol 103 (4) ◽  
pp. 6-8 ◽  
Author(s):  
Bernd Peinemann
2020 ◽  
Vol 10 (11) ◽  
pp. 3934 ◽  
Author(s):  
Un-Chang Jeong

The present study on vibration reduction in systems wherein the excitation frequency is variable designed and fabricated a magnetorheological elastomer (MRE)-based tunable dynamic vibration absorber and evaluated its performance in an experimental manner. The design of an MRE-based adaptive tuned dynamic vibration absorber (ATDVA) involves designing two parts: stiffness and mass. Before designing the MRE-based ATDVA, this study determined the resonance frequency of a target object for vibration reduction. For the design of the ATDVA’s stiffness part, the thickness of specimens was determined by measuring the rate of variation of the MRE’s shear modulus with respect to the MRE’s thickness. The design of the mass part was optimized using sensitivity analysis and genetic algorithms after the derivation of formulas for its magnetic field and mass. Further, upon the application of an electric current to the MRE, its stiffness was measured so that the stiffness of the designed MRE-based ATDVA could be tuned accordingly. Finally, the vibration-reducing performance of the MRE-based ATDVA was evaluated to determine the applicability of the vibration absorber under the condition of variable-frequency excitation.


2011 ◽  
Vol 121-126 ◽  
pp. 2358-2362 ◽  
Author(s):  
Zhun Wang

In accordance with the Coupling vibration absorber system, introduced to reduce the vibration of the wheel loader at driving, designed are two dynamic models for the loaders either with the application of vibration absorber system or without that of it. The simulation analysis of the vibration reduction, with the help of the simulation software Matlab/ Simulink, shows that the vibration absorber system may reduce not only the vehicle vibration effectively but also that of the work device, thus providing the basis for the further research and development of the riding control system.


2008 ◽  
Vol 24 (3) ◽  
pp. 253-266 ◽  
Author(s):  
Y.-R. Wang ◽  
T.-H. Chen

AbstractIn this paper, an optimized position of a mass-spring-damper vibration absorber is proposed for a rotating mechanism device (such as optical disk drive or rotary-wing and deck coupled system). A nonlinear 3-D theoretical model for a deck is established by Lagrange's equation. A 2-bladed rotor and deck (foundation) coupled aeroelastic system with vibration reduction device is presented and studied as well. The analytical solution is obtained by the Multiple-scales method for the case of no vibration absorber. The numerical results in time and frequency domain and with/no absorber are acquired. This research provides a theoretical background for the preliminary vibration reduction design for industries. It is found that the existing disk drives vibration can be reduced by simply adding the absorber at the end corner isolator of the deck, but without changing the main configurations. This will not only save costs but also increase testing efficiency, achieving the most cost-effective vibration reduction result.


Author(s):  
Chengzhi Shi ◽  
Robert G. Parker

This work develops an analytical model of centrifugal pendulum vibration absorber systems with equally-spaced, identical absorbers and uses it to investigate the structure of the modal vibration properties. The planar model admits two translational and one rotational degree-of-freedom for the rotor and a single arclength degree-of-freedom for each absorber. The gyroscopic effects from rotor rotation are taken into account. Examination of the associated eigenvalue problem reveals well-defined structure of the vibration modes resulting from the cyclic symmetry of the absorbers. The vibration modes are classified into rotational, translational, and absorber modes. Characteristics of each mode type are analytically proved.


Author(s):  
Yongguo Zhang ◽  
Chuanbo Ren ◽  
Kehui Ma ◽  
Zhen Xu ◽  
Pengcheng Zhou ◽  
...  

The combination of dynamic vibration absorber and partial state feedback with time-delay is called delayed resonator. In order to suppress the seat vibration caused by uneven road surface and improve ride comfort, the delayed resonator is applied to the seat suspension to realize active control of the seat suspension system. The dynamic model of the half-vehicle suspension system is established, and the time-delay differential equation of the system under external excitation is solved by the precise integration method. The root mean square of the time-domain vibration response of seat displacement, seat acceleration and vehicle acceleration are selected as the objective function. Then, the optimal time-delay control parameters are obtained by particle swarm optimization algorithm. The frequency sweeping method is used to obtain the critical time-delay value and time-delay stable interval of the system. Finally, an active seat suspension model with delayed resonator is established for numerical simulation. The results show that the delayed resonator can greatly suppress the seat vibration response regardless of the road simple harmonic excitation or random excitation. Compared with dynamic vibration absorber, it has a better vibration absorption effect and a wider vibration reduction frequency band.


2019 ◽  
Vol 3 (2) ◽  
pp. 85
Author(s):  
Susastro Susastro ◽  
Novi Indah Riani

Vibration is one of the problems that must be reduced in a vehicle. There are many ways to reduce vibration in vehicles, one of them is by adding Dynamic vibration absorber (DVA). While Dual Dynamic vibration absorber (dDVA) is a DVA period that is able to move in the translational direction given to the system to reduce translation vibration and when there is resonance. Translation DVA is an additional type of time used to reduce the vibration of the translation direction. So far there is not much research related to the use of translational DVA to reduce rotational vibrations as well as translation. In this study, a study was conducted related to the use of independent double translational DVA (dDVA) to reduce translation vibrations as well as rotation of the beam. The research was conducted by modeling the system obtained into mathematical equations and simulations were carried out to determine the characteristics of vibrations that arise. In the simulation, one of the DVA periods is placed at the center of the main system period, while the other DVA period is given a change between the center period and the end of the system. The results of the study show that the maximum reduction in translational vibration is 95.51% and occurs when the absorber is placed at the center of the system, while the maximum rotation vibration reduction is 56.62% and is obtained when the system is given with an arm ratio of 1 and zero.


Sign in / Sign up

Export Citation Format

Share Document