A fatigue comparison of high strength steel, stainless steel and titanium in a simulated ocean environment

JOM ◽  
1978 ◽  
Vol 30 (5) ◽  
pp. 15-20
Author(s):  
J. E. Beach ◽  
N. V. Marchica ◽  
L. L. Ichter
1978 ◽  
Author(s):  
Jeffrey E. Beach ◽  
Nicholas V. Marchica ◽  
David W. Taylor ◽  
Larry L. Ichter

Alloy Digest ◽  
2008 ◽  
Vol 57 (4) ◽  

Abstract Wieland-LV7 is a Cu-Ni-Mn alloy that after hardening, easily reaches the strength of high-strength steel and beryllium-copper. LV7 combines high strength, nonmagnetizability, and corrosion resistance. Spring properties are excellent. Color resembles stainless steel. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: CU-753. Producer or source: Wieland Metals Inc.


Author(s):  
Grant Brandal ◽  
Y. Lawrence Yao

Stress corrosion cracking is a phenomenon that can lead to sudden failure of metallic components. Here, we use laser shock peening (LSP) as a surface treatment for mitigation of stress corrosion cracking (SCC), and explore how the material differences of 304 stainless steel, 4140 high strength steel, and 260 brass affect their mitigation. Cathodic charging of the samples in 1 M sulfuric acid was performed to accelerate hydrogen uptake. Nontreated stainless steel samples underwent hardness increases of 28%, but LSP treated samples only increased in the range of 0–8%, indicative that LSP keeps hydrogen from permeating into the metal. Similarly for the high strength steel, LSP treating limited the hardness changes from hydrogen to less than 5%. Mechanical U-bends subjected to Mattsson's solution, NaCl, and MgCl2 environments are analyzed, to determine changes in fracture morphology. LSP treating increased the time to failure by 65% for the stainless steel, and by 40% for the high strength steel. LSP treating of the brass showed no improvement in U-bend tests. Surface chemical effects are addressed via Kelvin Probe Force Microscopy, and a finite element model comparing induced stresses is developed. Detection of any deformation induced martensite phases, which may be detrimental, is performed using X-ray diffraction. We find LSP to be beneficial for stainless and high strength steels but does not improve brass's SCC resistance. With our analysis methods, we provide a description accounting for differences between the materials, and subsequently highlight important processing considerations for implementation of the process.


Author(s):  
Fangying Wang ◽  
Ben Young ◽  
Leroy Gardner

A numerical modelling programme simulating the structural behaviour of concrete-filled double skin tubular (CFDST) stub columns with stainless steel outer tubes and high strength steel inner tubes is presented in this paper. The numerical model, which was developed using the finite element package ABAQUS, was initially validated against existing experimental results considering ultimate load, load-deflection histories and failure modes, with good agreement observed. Upon validation of the FE model, an extensive parametric study was undertaken whereby the cross-section slendernesses of the outer and inner tubes, the strength of the inner tube and the concrete grades were varied. These generated results together with the experimental data were then employed to assess the suitability of the design provisions of the European Standard EN 1994-1-1 and American Specification for concrete-filled tubes. Modifications to these design rules are also proposed, and a reduction factor (η) is suggested to account for the effective compressive strength in high strength concrete. 


Author(s):  
Defu Nie ◽  
Yoshiharu Mutoh

The experimentally obtained fatigue limit of high strength steel is generally a value reduced by inherent flaws, which does not characterize the resistance of high strength steel matrix to cyclic loading. To investigate the fatigue limit of matrix, fatigue tests of SUS630 stainless steel were performed. SUS630 stainless steel showed a distinct dual-stage S-N curve: one stage corresponding to high stress where crack initiated at the surface and another stage corresponding to low stress where crack initiated from the subsurface inclusion (Al2O3). Based on small crack mechanics, a model was proposed to predict the fatigue limit of SUS630 stainless steel matrix. Moreover, fatigue tests of blunt notch specimens were performed to examine the validity of this model.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Defu Nie ◽  
Yoshiharu Mutoh

The experimentally obtained fatigue limit of high strength steel is generally a value reduced by inherent flaws, and such a value does not characterize the resistance of the matrix of high strength steel to cyclic loading. To investigate the fatigue limit of the matrix, fatigue tests of 17-4PH stainless steel were performed. 17-4PH stainless steel showed a distinct dual-stage S-N curve: one stage corresponding to high stress where crack initiated at the surface and another stage corresponding to low stress where crack initiated from the subsurface inclusion (Al2O3). Based on small crack mechanics, a model was proposed to predict the fatigue limit of the matrix of 17-4PH stainless steel and its validity has been discussed.


Author(s):  
G. Fourlaris ◽  
T. Gladman

Stainless steels have widespread applications due to their good corrosion resistance, but for certain types of large naval constructions, other requirements are imposed such as high strength and toughness , and modified magnetic characteristics.The magnetic characteristics of a 302 type metastable austenitic stainless steel has been assessed after various cold rolling treatments designed to increase strength by strain inducement of martensite. A grade 817M40 low alloy medium carbon steel was used as a reference material.The metastable austenitic stainless steel after solution treatment possesses a fully austenitic microstructure. However its tensile strength , in the solution treated condition , is low.Cold rolling results in the strain induced transformation to α’- martensite in austenitic matrix and enhances the tensile strength. However , α’-martensite is ferromagnetic , and its introduction to an otherwise fully paramagnetic matrix alters the magnetic response of the material. An example of the mixed martensitic-retained austenitic microstructure obtained after the cold rolling experiment is provided in the SEM micrograph of Figure 1.


Sign in / Sign up

Export Citation Format

Share Document