Role of strain energy in solid solution thermodynamics

JOM ◽  
1954 ◽  
Vol 6 (5) ◽  
pp. 592-593
Author(s):  
E. S. Machlin
Author(s):  
Takashi Yamamoto ◽  
Akihito Kurimoto ◽  
Riona Sato ◽  
Shoki Katada ◽  
Hirotaka Mine ◽  
...  

Ethanol conversion by Ga2O3-ZrO2 solid solution was examined in the temperature range 573–773 K, and acetone/isobutene formation was confirmed under cofeeding of H2O vapor. The reaction pathway was empirically investigated...


2015 ◽  
Vol 1112 ◽  
pp. 47-52 ◽  
Author(s):  
Frida Ulfah Ermawati ◽  
Suasmoro Suasmoro ◽  
Suminar Pratapa

A study of liquid mixing route to synthesize high purity Mg0.8Zn0.2TiO3 nanopowder, a candidate dielectric ceramics, has been successfully performed. Formation of the phases on the dried powder was studied using TG/DTA, XRD and FT-IR data. Rietveld analysis on the collected XRD patterns confirmed the formation of solid solution in the system. Such solid solution can be obtained from the powder calcined at 500 °C, but calcination at 550 °C gave rise to the most optimum molar purity up to 98.5% without intermediate phases. The role of Zn ions on the formation of solid solution was also discussed. Homogeneity of particle size distribution and nano-crystallinity of the system was verified from the particle size analyzer data, TEM image and the Rietveld analysis output.


Author(s):  
Feng Sha ◽  
Chizhou Tang ◽  
Shan Tang ◽  
Qingnan Wang ◽  
Zhe Han ◽  
...  

2021 ◽  
Author(s):  
Vahid Jalilvand ◽  
Ali Dolatabadi ◽  
Christian Moreau ◽  
Saeed Mohammadkhani ◽  
Lionel Roué ◽  
...  

Abstract The focus of this study is the formation of a solid solution and metallic nickel in the cobalt-nickel mixed oxide coatings during suspension plasma spray (SPS) deposition. The (Co,Ni)O solid solution is a potential material for inert anode applications in aluminum production. SPS coatings and in-flight collected particles are studied to gain further insight into the melting and mixing phenomena of the NiO and CoO powders as well as phase formation in the deposited coatings. Moreover, the role of suspension feedstock particle sizes on the microstructure of coatings is discussed. SEM, EDS and X-ray diffraction studies helped better understanding the formation of different crystalline phases within the as-sprayed coatings. It was found that the formation of metallic nickel is possible in the coatings. The results support the importance of substrate temperature on the formation of metallic Ni, so that keeping the substrate at low temperature results in an increase of the Ni content in the coatings. In this study, possible causes for the formation of metallic Ni during spraying are discussed.


2017 ◽  
Vol 73 (a1) ◽  
pp. a254-a254
Author(s):  
Ian Duncan Williams ◽  
Lawrence Wan-Yin Wong ◽  
Gemma Shuk-Shan Tam ◽  
Herman Ho-Yung Sung
Keyword(s):  

2019 ◽  
Vol 104 (8) ◽  
pp. 1180-1188 ◽  
Author(s):  
Shuo Yin ◽  
Richard Wirth ◽  
Changqian Ma ◽  
Jiannan Xu

Abstract The migrating fluid-mineral interface provides an opportunity for the uptake of trace elements as solid solutions in the newly formed crystal lattice during the non-equilibrium growth of the crystal. However, mineral nanoparticles could precipitate directly from the interfacial fluid when it evolves to a supersaturated situation. To better understand the role of mineral nanoparticles in this scenario, this study focuses on a well-documented magnetite with oscillatory zoning from a skarn deposit by using high-resolution transmission electron microscopy (TEM). Our results show that the Al concentration in magnetite measured on a micrometer-scale is caused by three different effects: Al solid solution, Al-rich nanometer-sized lamellae, and zinc spinel nanoparticles in the host magnetite. Here, we propose a genetic relationship among the three different phases mentioned above. At first, a continuous increase of the Al concentration in the interfacial fluid can be incorporated into the crystal lattice of magnetite forming a solid solution. During cooling in a later stage, aluminum in magnetite is oversaturated and exsolution of hercynite (Al-rich lamellae) occurs from the host magnetite. If the Al concentration at the fluid-magnetite interface still increases during further growth of magnetite, the substitution of Fe by Al has gradually reached saturation so that aluminum cannot be incorporated in the magnetite crystal structure any longer. Using the magnetite lattice as a template, nucleation of abundant zinc spinel nanoparticles occurs. This will, in turn, lead to a gradual depletion of Al concentration in the interfacial fluid until the available ions for zinc spinel nucleation and growth have been used up. As a result, the migrating fluid-magnetite interface will enrich the Al concentration in the interfacial fluid until the available ion concentration is sufficient for nucleation of zinc spinel phase again. The fluid-mineral interface in this mechanism has been repeatedly utilized during crystal growth, providing an efficient way for the uptake of trace element from a related undersaturated bulk fluid.


1990 ◽  
Vol 213 ◽  
Author(s):  
Dennis M. Dimiduk ◽  
Satish Rao

ABSTRACTFundamental to understanding the results of alloy design studies, is the need for understanding the intrinsic role of solutes in a particular compound. For many compounds such an understanding must be built from a systematic exploration of the role of deviations from the stoichiometric composition as well as the role of ternary solute additions on the variation of flow behavior. Within most intermetallic systems the problem is complicated since the fundamental mechanisms of flow are not well established and, in those systems where these mechanisms are known, thermal activation can lead to dislocation-core transformations and changes in the operative slip systems with temperature. In general, flow may be governed by more than one dislocation process at a given temperature and deformation twinning may be a major contributing deformation mechanism. The problem of isolating the mechanisms of solid-solution hardening may, therefore, require treatment as a problem of combined strengthening mechanisms operating in parallel. This paper reviews the key aspects of deformation mechanisms and solute strengthening in intermetallic alloys. Classical elastic theories of solute hardening serve as an origin, from which, the progress made to date in isolating the mechanisms of solute hardening in ordered alloys is discussed.


2020 ◽  
Vol 225 ◽  
pp. 01013
Author(s):  
K. Derraji ◽  
C. Favotto ◽  
J-C Valmalette ◽  
S. Villain ◽  
J-R. Gavarri ◽  
...  

In the general framework of the development of materials with tunable photoluminescence, a series of cerium samarium tungstates Ce(2-x)Smx(WO4)3 with x≤0.3 was synthesized by a coprecipitation method followed by thermal treatment at 1000 °C. The polycrystalline compounds were characterized by X-ray diffraction, scanning electron microscopy and photoluminescence experiments. In the present work, the objective would be to determine the role of PL emitting centers in the variations of PL intensities. Firstly, Rietveld analysis showed a decrease of cell parameters and confirmed that a solid solution was obtained. Diffraction profile analyses showed that structural distortions increasing with composition x were observed: they were ascribed to difference in cation sizes of Ce3+ and Sm3+, and to defects generated during crystal growth. The photoluminescence (PL) spectra were obtained under X-Ray (45 kV-35 mA) and UV (364.5 nm) excitations. Two PL emissions of Ce3+ were observed only under UV excitation. Four PL emissions of Sm3+ were observed under UV and X-ray excitations, and their intensities decreased with increasing composition x. Two additional transitions were observed under UV and X-ray excitations: they were attributed to oxygen vacancy defects. In the range 800 to 1000 nm, an increasing IR emission is observed: it was ascribed to emissions due to other oxygen vacancies. The main results are reported in Table 1. The chromaticity diagram (see Figure 1) showed that the colors associated with PL responses vary with Sm composition and excitation energies. This offers the opportunity to develop materials with tunable PL. To better understand this complex behavior, now, we plan to study the solid solution in the composition range x>0.3.


Sign in / Sign up

Export Citation Format

Share Document