Grain Yield, Kernel Weight, and Septoria Tritici Blotch Responses of Wheat to Potassium and Nitrogen Fertilization

2002 ◽  
Vol 30 (1-2) ◽  
pp. 141-147 ◽  
Author(s):  
M. I. E. Arabi ◽  
M. Jawhar
1976 ◽  
Vol 87 (2) ◽  
pp. 451-454 ◽  
Author(s):  
S. A. M. Youssef ◽  
A. Y. Abdel-Rahman

SummaryGrain yield, plant height, spike length, grain weight per spike, 100-kernel weight, protein quantity and quality of Mexipak wheat grown with four rates of applied nitrogen (0, 75, 150 and 225 kg N/ha) and five rates of applied zinc (0, 1·25, 2·5, 5·0 and 7·5 kg Zn/ha) were measured. All these attributes were affected significantly by nitrogen fertilization in a linear manner. Differences among rates of applied zinc were significant for grain weight per spike, 100-kernel weight, grain yield and protein quantity and quality.


2018 ◽  
Vol 83 ◽  
pp. 49-57 ◽  
Author(s):  
Ana Carolina Castro ◽  
María Constanza Fleitas ◽  
Matías Schierenbeck ◽  
Guillermo Sebastián Gerard ◽  
María Rosa Simón

2019 ◽  
Vol 12 (4) ◽  
pp. 367-378 ◽  
Author(s):  
P.T. Scaglioni ◽  
V. Scarpino ◽  
F. Marinaccio ◽  
F. Vanara ◽  
E. Badiale Furlong ◽  
...  

In this study, microalgal phenolic extracts (MPE) of Nannochloropsis sp. and Spirulina sp. were tested in in vitro experiments and, in comparison with synthetic fungicides, in field experiments, for their ability to control Fusarium graminearum development and limit deoxynivalenol (DON) contamination. In in vitro experiments, the Nannochloropsis and Spirulina extracts inhibited fungal biomass by 34 and 25%, respectively, compared with the untreated control. This effect was confirmed by a reduction in ergosterol production (-80% for Nannochloropsis and -75% for Spirulina) and in DON content (-97% for Nannochloropsis and -62% for Spirulina). In field experiments, application of the fungicide prothioconazole and prothioconazole + tebuconazole resulted in control of Fusarium head blight (FHB) and foliar disease, leading to a significant increase in grain yield (+13%) and a reduction in DON content (-46%) compared to the untreated control. The application of MPE at wheat flowering reduced the severity of FHB compared with the control (-35% for Spirulina and -39% for Nannochloropsis). However, the MPE did not significantly control foliar diseases (Septoria tritici blotch) and therefore did not enhance the grain yield. Moreover, no effect in reducing the DON content in comparison to the control was observed in the field. In view of that, the use of MPE in wheat fields as real alternatives to conventional fungicides requires the discovery of solutions to empower their persistence and efficacy.


1970 ◽  
pp. 33-36
Author(s):  
Faizan Mahmood, Hidayat- Ur-Rahman, Nazir Ahmad ◽  
Fahim-ul- Haq ◽  
Samrin Gul, Quaid Hussain ◽  
Ammara Khalid ◽  
Touheed Iqbal ◽  
...  

This study evaluated the performance of 64 half sib families (HSF) derived from “Azam” variety of maize using partially balanced lattice square design with two replications. Data were recorded on grain yield and other agronomic traits. Observations showed difference in half-sib families for studied traits. Among the 64 half-sib families, minimum days to 50% tasseling (51 days) were observed for HS-49 while maximum (57 days) for HS-63. Minimum days to 50% silking (56 days) were counted for HS-6 while maximum (63 days) for HS-23. Minimum days to 50% anthesis (55 days) were counted for HS-1 and HS-6 while maximum (62 days) for HS-23. Similarly, minimum ASI (-2 days) were observed in HS-1, HS-15, HS-16, HS-28 and HS-63 while maximum (2 days) in HS-48. Minimum (60 cm) ear height was recorded for HS-11 and maximum (93.5 cm) for HS-28. Minimum fresh ear weight (1.3 kg) was weighted for HS-17 while maximum (3.2 kg) for HS-21. Grain moisture was recorded minimum (19.35 %) for HS-19 and maximum (31.25%) for HS-2. HS-42 showed minimum (28 g) 100 kernel weight while HS-5 showed maximum (47 g). Grain yield was minimum (2323 kg ha-1) for HS-17 and maximum (5742 kg ha-1) for HS-21. Maximum heritability estimate (0.92) was recorded for fresh ear weight, while minimum (0.41) was observed for ear height.


2011 ◽  
Vol 37 (10) ◽  
pp. 1888-1896
Author(s):  
Wen-Ming WU ◽  
Jin-Cai LI ◽  
Hong-Jian CHEN ◽  
Feng-Zhen WEI ◽  
Shi-Ji WANG

Genetics ◽  
1997 ◽  
Vol 145 (2) ◽  
pp. 453-465 ◽  
Author(s):  
Zhikang Li ◽  
Shannon R M Pinson ◽  
William D Park ◽  
Andrew H Paterson ◽  
James W Stansel

The genetic basis for three grain yield components of rice, 1000 kernel weight (KW), grain number per panicle (GN), and grain weight per panicle (GWP), was investigated using restriction fragment length polymorphism markers and F4 progeny testing from a cross between rice subspecies japonica (cultivar Lemont from USA) and indica (cv. Teqing from China). Following identification of 19 QTL affecting these traits, we investigated the role of epistasis in genetic control of these phenotypes. Among 63 markers distributed throughout the genome that appeared to be involved in 79 highly significant (P < 0.001) interactions, most (46 or 73%) did not appear to have “main” effects on the relevant traits, but influenced the trait(s) predominantly through interactions. These results indicate that epistasis is an important genetic basis for complex traits such as yield components, especially traits of low heritability such as GN and GWP. The identification of epistatic loci is an important step toward resolution of discrepancies between quantitative trait loci mapping and classical genetic dogma, contributes to better understanding of the persistence of quantitative genetic variation in populations, and impels reconsideration of optimal mapping methodology and marker-assisted breeding strategies for improvement of complex traits.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1108
Author(s):  
Dominika Piaskowska ◽  
Urszula Piechota ◽  
Magdalena Radecka-Janusik ◽  
Paweł Czembor

Septoria tritici blotch (STB) is one of the most devastating foliar diseases of wheat worldwide. Host resistance is the most economical and safest method of controlling the disease, and information on resistance loci is crucial for effective breeding for resistance programs. In this study we used a mapping population consisting of 126 doubled-haploid lines developed from a cross between the resistant cultivar Mandub and the susceptible cultivar Begra. Three monopycnidiospore isolates of Z. tritici with diverse pathogenicity were used to test the mapping population and parents’ STB resistance at the seedling stage (under a controlled environment) and adult plant stage (polytunnel). For both types of environments, the percentage leaf area covered by necrosis (NEC) and pycnidia (PYC) was determined. A linkage map comprising 5899 DArTSNP and silicoDArT markers was used for the quantitative trait loci (QTL) analysis. The analysis showed five resistance loci on chromosomes 1B, 2B and 5B, four of which were derived from cv. Mandub. The location of QTL detected in our study on chromosomes 1B and 5B may suggest a possible identity or close linkage with Stb2/Stb11/StbWW and Stb1 loci, respectively. QStb.ihar-2B.4 and QStb.ihar-2B.5 detected on chromosome 2B do not co-localize with any known Stb genes. QStb.ihar-2B.4 seems to be a new resistance locus with a moderate effect (explaining 29.3% of NEC and 31.4% of PYC), conferring resistance at the seedling stage. The phenotypic variance explained by QTL detected in cv. Mandub ranged from 11.9% to 70.0%, thus proving that it is a good STB resistance source and can potentially be utilized in breeding programs.


Sign in / Sign up

Export Citation Format

Share Document