Topology of Higgs fields

Author(s):  
J. Arafune ◽  
P. G. O. Freund ◽  
C. J. Goebel
Keyword(s):  
2016 ◽  
Vol 31 (18) ◽  
pp. 1630027
Author(s):  
Ikuo S. Sogami

With multi-spinor fields which behave as triple-tensor products of the Dirac spinors, the Standard Model is extended so as to embrace three families of ordinary quarks and leptons in the visible sector and an additional family of exotic quarks and leptons in the dark sector of our Universe. Apart from the gauge and Higgs fields of the Standard Model symmetry G, new gauge and Higgs fields of a symmetry isomorphic to G are postulated to exist in the dark sector. It is the bi-quadratic interaction between visible and dark Higgs fields that opens a main portal to the dark sector. Breakdowns of the visible and dark electroweak symmetries result in the Higgs boson with mass 125 GeV and a new boson which can be related to the diphoton excess around 750 GeV. Subsequent to a common inflationary phase and a reheating period, the visible and dark sectors follow weakly-interacting paths of thermal histories. We propose scenarios for dark matter in which no dark nuclear reaction takes place. A candidate for the main component of the dark matter is a stable dark hadron with spin 3/2, and the upper limit of its mass is estimated to be 15.1 GeV/c2.


2016 ◽  
Vol 31 (11) ◽  
pp. 1650065
Author(s):  
Pham Quang Hung ◽  
Nguyen Nhu Le

We present the Higgs mechanism in the context of the EW-scale [Formula: see text] model in which electroweak symmetry is dynamically broken by condensates of mirror quark and right-handed neutrino through the exchange of one fundamental Higgs doublet and one fundamental Higgs triplet, respectively. The formation of these condensates is dynamically investigated by using the Schwinger–Dyson approach. The occurrence of these condensates will give rise to the rich Higgs spectrum. In addition, the VEVs of Higgs fields is also discussed in this dynamical phenomenon.


2015 ◽  
Vol 30 (09) ◽  
pp. 1550044 ◽  
Author(s):  
L. V. Laperashvili ◽  
H. B. Nielsen ◽  
A. Tureanu

We develop a self-consistent Spin (4, 4)-invariant model of the unification of gravity with weak SU(2) gauge and Higgs fields in the visible and invisible sectors of our universe. We consider a general case of the graviweak unification, including the higher-derivative super-renormalizable theory of gravity, which is a unitary, asymptotically-free and perturbatively consistent theory of the quantum gravity.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Shuntaro Aoki ◽  
Hyun Min Lee ◽  
Adriana G. Menkara

Abstract We propose a new construction of the supergravity inflation as an UV completion of the Higgs-R2 inflation. In the dual description of R2-supergravity, we show that there appear dual chiral superfields containing the scalaron or sigma field in the Starobinsky inflation, which unitarizes the supersymmetric Higgs inflation with a large non-minimal coupling up to the Planck scale. We find that a successful slow-roll inflation is achievable in the Higgs-sigma field space, but under the condition that higher curvature terms are introduced to cure the tachyonic mass problems for spectator singlet scalar fields. We also discuss supersymmetry breaking and its transmission to the visible sector as a result of the couplings of the dual chiral superfields and the non-minimal gravity coupling of the Higgs fields.


2007 ◽  
Vol 16 (05) ◽  
pp. 1437-1443
Author(s):  
AKINA KATO ◽  
TAKUYA MOROZUMI ◽  
NORIMI YOKOZAKI ◽  
SYN KYU KANG

Seesaw model is an attractive model because it may explain baryogenesis through leptogenesis and also may explain the small neutrino mass. The supersymmetric seesaw model may be more attractive because the naturalness problem is absent in supersymmetric theory. Recently, the higgs mass correction due to leptons and sleptons loops is computed.1 In this talk, we report on the preliminary results on the one loop corrections of leptons and sleptons loops to the effective action of Higgs sector for super symmetric seesaw model. Our results show that the corrections to the mass parameters for Higgs sector are proportional to the soft breaking parameters of supersymmetric seesaw model, while for the quartic couplings of Higgs fields, the corrections are suppressed by inverse powers of the right-handed neutrino mass.


2009 ◽  
Vol 79 (7) ◽  
Author(s):  
Mark Wurtz ◽  
Randy Lewis ◽  
T. G. Steele

1984 ◽  
Vol 27 (7) ◽  
pp. 546-549
Author(s):  
G. A. Sardanashvili ◽  
A. V. Subbotin
Keyword(s):  

2007 ◽  
Vol 16 (05) ◽  
pp. 1427-1436 ◽  
Author(s):  
SATORU KANEKO ◽  
HIDEYUKI SAWANAKA ◽  
TAKAYA SHINGAI ◽  
MORIMITSU TANIMOTO ◽  
KOICHI YOSHIOKA

A texture-zeros is an approach to reduce the number of free parameters in Yukawa couplings and it is one of the most attractive ones. In our paper, we discuss the origin of zero-structure in texture-zeros by S3 flavor symmetry approach. Some of electroweak doublet Higgs fields have vanishing vacuum expectation value (VEV) which leads to vanishing elements in quark and lepton mass matrices. Then, the structure of supersymmetric scalar potential is analyzed and Higgs fields have non-trivial S3 charges. As a prediction of our paper, a lower bound of a MNS matrix element, Ue3 ≥ 0.04, is obtained. The suppression of flavor-changing neutral currents (FCNC) mediated by the Higgs fields is discussed and lower bounds of the Higgs masses are derived.


Sign in / Sign up

Export Citation Format

Share Document