scholarly journals FLAVOR SYMMETRY AND VACUUM ALIGNED MASS TEXTURES

2007 ◽  
Vol 16 (05) ◽  
pp. 1427-1436 ◽  
Author(s):  
SATORU KANEKO ◽  
HIDEYUKI SAWANAKA ◽  
TAKAYA SHINGAI ◽  
MORIMITSU TANIMOTO ◽  
KOICHI YOSHIOKA

A texture-zeros is an approach to reduce the number of free parameters in Yukawa couplings and it is one of the most attractive ones. In our paper, we discuss the origin of zero-structure in texture-zeros by S3 flavor symmetry approach. Some of electroweak doublet Higgs fields have vanishing vacuum expectation value (VEV) which leads to vanishing elements in quark and lepton mass matrices. Then, the structure of supersymmetric scalar potential is analyzed and Higgs fields have non-trivial S3 charges. As a prediction of our paper, a lower bound of a MNS matrix element, Ue3 ≥ 0.04, is obtained. The suppression of flavor-changing neutral currents (FCNC) mediated by the Higgs fields is discussed and lower bounds of the Higgs masses are derived.

2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Ketan Patel

A mechanism to generate realistic fermion mass hierarchies based on supersymmetric gauged U(1)_FU(1)F symmetry in flat five-dimensional (5D) spacetime is proposed. The fifth dimension is compactified on S^1/Z_2S1/Z2 orbifold. The standard model fermions charged under the extra abelian symmetry along with their superpartners live in the 5D bulk. Bulk masses of fermions are generated by the vacuum expectation value of N=2N=2 superpartner of U(1)_FU(1)F gauge field, and they are proportional to U(1)_FU(1)F charges of respective fermions. This decides localization of fermions in the extra dimension, which in turn gives rise to exponentially suppressed Yukawa couplings in the effective 4D theory. Anomaly cancellation puts stringent constraints on the allowed U(1)_FU(1)F charges which leads to correlations between the masses of quarks and leptons. We perform an extensive numerical scan and obtain several solutions for anomaly-free U(1)_FU(1)F, which describe the observed pattern of fermion masses and mixing with all the fundamental parameters of order unity. It is found that the possible existence of SM singlet neutrinos substantially improves the spectrum of solutions by offering more freedom in choosing U(1)_FU(1)F charges. The model predicts Z^\primeZ′ boson mediating flavour violating interactions in both the quark and lepton sectors with the couplings which can be explicitly determined from the Yukawa couplings.


Author(s):  
Tatsuo Kobayashi ◽  
Yusuke Shimizu ◽  
Kenta Takagi ◽  
Morimitsu Tanimoto ◽  
Takuya H. Tatsuishi

Abstract We present a flavor model with $S_3$ modular invariance in the framework of SU(5) grand unified theory (GUT). The $S_3$ modular forms of weights $2$ and $4$ give the quark and lepton mass matrices with a common complex parameter, the modulus $\tau$. The GUT relation of down-type quarks and charged leptons is imposed by the vacuum expectation value (VEV) of the adjoint 24-dimensional Higgs multiplet in addition to the VEVs of $5$ and $\bar 5$ Higgs multiplets of SU(5). The observed Cabibbo–Kobayashi–Maskawa and Pontecorvo–Maki–Nakagawa–Sakata mixing parameters as well as the mass eigenvalues are reproduced properly. We discuss the leptonic charge–parity phase and the effective mass of the neutrinoless double beta decay with the sum of neutrino masses.


2006 ◽  
Vol 21 (26) ◽  
pp. 5187-5204 ◽  
Author(s):  
G. K. LEONTARIS ◽  
A. PSALLIDAS ◽  
N. D. VLACHOS

Motivated by effective low energy models of string origin, we discuss the neutrino masses and mixing within the context of the Minimal Supersymmetric Standard Model supplemented by a U(1) anomalous family symmetry and additional Higgs singlet fields charged under this extra U(1). In particular, we interpret the solar and atmospheric neutrino data assuming that there are only three left-handed neutrinos which acquire Majorana masses via a lepton number violating dimension-five operator. We derive the general form of the charged lepton and neutrino mass matrices when two different pairs of singlet Higgs fields develop nonzero vacuum expectation values and show how the resulting neutrino textures are related to approximate lepton flavor symmetries. We perform a numerical analysis for one particular case and obtain solutions for masses and mixing angles, consistent with experimental data.


Universe ◽  
2020 ◽  
Vol 6 (9) ◽  
pp. 151
Author(s):  
Aharon Davidson ◽  
Tomer Ygael

We elevate the field theoretical similarities between Maxwell and Weyl vector fields into a full local scale/gauge invariant Weyl/Maxwell mutual sourcing theory. In its preliminary form, and exclusively in four dimensions, the associated Lagrangian is dynamical scalar field free, hosts no fermion matter fields, and Holdom kinetic mixing is switched off. The mutual sourcing term is then necessarily spacetime curvature (not just metric) dependent, and inevitably Ricci linear, suggesting that a non-vanishing spacetime curvature can in principle induce an electromagnetic current. In its mature form, however, the Weyl/Maxwell mutual sourcing idea serendipitously constitutes a novel variant of the gravitational Weyl-Dirac (incorporating Brans-Dicke) theory. Counter intuitively, and again exclusively in four dimensions, the optional quartic scalar potential gets consistently replaced by a Higgs-like potential, such that the co-divergence of the Maxwell vector field resembles a conformal vacuum expectation value.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Natthawin Cho ◽  
Xin-Qiang Li ◽  
Fang Su ◽  
Xin Zhang

The two-Higgs-doublet model (2HDM), as one of the simplest extensions of the Standard Model (SM), is obtained by adding another scalar doublet to the SM and is featured by a pair of charged Higgs, which could affect many low-energy processes. In the “Higgs basis” for a generic 2HDM, only one scalar doublet gets a nonzero vacuum expectation value and, under the criterion of minimal flavor violation, the other one is fixed to be either color-singlet or color-octet, which are named as type III and type C 2HDM, respectively. In this paper, we study the charged-Higgs effects of these two models on the K0-K¯0 mixing, an ideal process to probe New Physics (NP) beyond the SM. Firstly, we perform a complete one-loop computation of the box diagrams relevant to the K0-K¯0 mixing, keeping the mass and momentum of the external strange quark up to the second order. Together with the up-to-date theoretical inputs, we then give a detailed phenomenological analysis, in the cases of both real and complex Yukawa couplings of the charged Higgs to quarks. The parameter spaces allowed by the current experimental data on the mass difference ΔmK and the CP-violating parameter ϵK are obtained and the differences between these two 2HDMs are investigated, which are helpful to distinguish them from each other from a phenomenological point of view.


Author(s):  
Géraldine Servant

The origin of the matter–antimatter asymmetry of the universe remains unexplained in the Standard Model (SM) of particle physics. The origin of the flavour structure is another major puzzle of the theory. In this article, we report on recent work attempting to link the two themes through the appealing framework of electroweak (EW) baryogenesis. We show that Yukawa couplings of SM fermions can be the source of CP violation for EW baryogenesis if they vary at the same time as the Higgs is acquiring its vacuum expectation value, offering new avenues for EW baryogenesis. The advantage of this approach is that it circumvents the usual severe bounds from electric dipole moments. These ideas apply if the mechanism explaining the flavour structure of the SM is connected to EW symmetry breaking, as motivated for instance in Randall–Sundrum or Composite Higgs models. We compute the resulting baryon asymmetry for different configurations of the Yukawa coupling variation across the bubble wall and show that it can naturally be of the right order. This article is part of the Theo Murphy meeting issue ‘Higgs cosmology’.


1996 ◽  
Vol 11 (09) ◽  
pp. 737-747 ◽  
Author(s):  
CARL H. ALBRIGHT ◽  
SATYANARAYAN NANDI

We construct an explicit SO (10)× U (1)F model of the Yukawa interactions by using as a guide previous phenomenological results obtained from a bottom-up approach to quark and lepton mass matrices. The U (1)F family symmetry group sets the textures for the Majorana and generic Dirac mass matrices by restricting the type and number of Higgs diagrams which can contribute to each matrix element, while the SO(10) group relates each particular element of the up, down, neutrino and charged lepton Dirac matrices. The Yukawa couplings and vacuum expectation values associated with pairs of 1, 45, 10 and 126 Higgs representations successfully correlate all the quark and lepton masses and mixings in the scenario incorporating the nonadiabatic solar neutrino and atmospheric neutrino depletion effects.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Koichi Hamaguchi ◽  
Shihwen Hor ◽  
Natsumi Nagata

Abstract We construct a supersymmetric flipped SU(5) grand unified model that possesses an R symmetry. This R symmetry forbids dangerous non-renormalizable operators suppressed by a cut-off scale up to sufficiently large mass dimensions so that the SU(5)-breaking Higgs field develops a vacuum expectation value of the order of the unification scale along the F- and D-flat directions, with the help of the supersymmetry-breaking effect. The mass terms of the Higgs fields are also forbidden by the R symmetry, with which the doublet-triplet splitting problem is solved with the missing partner mechanism. The masses of right-handed neutrinos are generated by non-renormalizable operators, which then yield a light neutrino mass spectrum and mixing through the seesaw mechanism that are consistent with neutrino oscillation data. This model predicts one of the color-triplet Higgs multiplets to lie at an intermediate scale, and its mass is found to be constrained by proton decay experiments to be ≳ 5 × 1011 GeV. If it is ≲ 1012 GeV, future proton decay experiments at Hyper-Kamiokande can test our model in the p → π0μ+ and p → K0μ+ decay modes, in contrast to ordinary grand unified models where p → π0e+ or p → $$ {K}^{+}\overline{\nu} $$ K + ν ¯ is the dominant decay mode. This characteristic prediction for the proton decay branches enables us to distinguish our model from other scenarios.


Author(s):  
Nikola Perkovic

The problem of Yukawa couplings being arbitrary parameters in the Standard Model Higgs mechanism is a long standing one due to their formulaic dependence on the Higgs Vacuum Expectation Value. We will attempt to solve this problem and provide a strong argument that the Yukawa couplings of charged leptons and down type quarks are not arbitrary parameters in the SM. A new methodology for predicting the Yukawa couplings will be presented by using Compton wavelengths, the Rydberg Constant and g-factors of charged leptons instead of relying on the Higgs VEV. We will then proceed to rewrite this new method in terms of an empirical formula that depends on the running of the fine-structure constant on the Q scale, charge and lepton quantum numbers and g-factors to predict the values of the Yukawa couplings for all three generations of charged leptons and d-type quarks. We will also touch on the subject of neutrinos both as Majorana and Dirac fermions respectively and make a prediction for the lightest possible Majorana neutrino and the differences between Dirac neutrinos and anti-neutrinos. We conclude that the Yukawa couplings are not arbitrary parameters in the SM and that this new formula provides very accurate results.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Simon J. D. King ◽  
Stephen F. King ◽  
Stefano Moretti ◽  
Samuel J. Rowley

Abstract Although the 125 GeV Higgs boson discovered at the LHC is often heralded as the origin of mass, it may not in fact be the origin of Yukawa couplings. In alternative models, Yukawa couplings may instead arise from a seesaw type mechanism involving the mixing of Standard Model (SM) chiral fermions with new vector-like fermions, controlled by the vacuum expectation value (VEV) of a new complex Higgs singlet field 〈Φ〉. For example, the largest third family (t, b) quark Yukawa couplings may be forbidden by a U(1)′ gauge or global symmetry, broken by 〈Φ〉, and generated effectively via mixing with a vector-like fourth family quark doublet (T, B). Such theories predict a new physical Higgs singlet ϕ, which we refer to as the Yukon, resulting from 〈Φ〉, in the same way that the Higgs boson h0 results from 〈H〉. In a simplified model we discuss the prospects for discovering the Yukon ϕ in gluon-gluon fusion production, with (t, b) and (T, B) quarks in the loops, and decaying in the channels ϕ → γγ, Zγ and ϕ → tT → tth0, ttZ. The potential for discovery of the Yukon ϕ is studied at present or future hadron colliders such as the LHC (Run 3), HL-LHC, HE-LHC and/or FCC. For example, we find that a 300–350 GeV Yukon ϕ could be accessed at LHC Run 3 in the di-photon channel in the global model, providing a smoking gun signature of the origin of Yukawa couplings. The tth0, ttZ channels are more involved and warrant a more sophisticated analysis.


Sign in / Sign up

Export Citation Format

Share Document