scholarly journals Inflation and supersymmetry breaking in Higgs-R2 supergravity

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Shuntaro Aoki ◽  
Hyun Min Lee ◽  
Adriana G. Menkara

Abstract We propose a new construction of the supergravity inflation as an UV completion of the Higgs-R2 inflation. In the dual description of R2-supergravity, we show that there appear dual chiral superfields containing the scalaron or sigma field in the Starobinsky inflation, which unitarizes the supersymmetric Higgs inflation with a large non-minimal coupling up to the Planck scale. We find that a successful slow-roll inflation is achievable in the Higgs-sigma field space, but under the condition that higher curvature terms are introduced to cure the tachyonic mass problems for spectator singlet scalar fields. We also discuss supersymmetry breaking and its transmission to the visible sector as a result of the couplings of the dual chiral superfields and the non-minimal gravity coupling of the Higgs fields.

2019 ◽  
Vol 28 (15) ◽  
pp. 1950170
Author(s):  
Kui Xiao

The evolutionary pictures for phantom field in loop quantum cosmology are discussed in this paper. Comparing the dynamical behaviors of the phantom field with one of the canonical scalar fields in loop quantum cosmology scenario, we found that the [Formula: see text] phase trajectories are the same, but the [Formula: see text] phase-spaces are very different, and the phantom field with considering potentials can drive neither super inflation nor slow-roll inflation in loop quantum cosmology (LQC) scenario. While the universe is filled with multiple dark fluids, to ensure that the condition [Formula: see text] does not violate, the energy density of dark matter [Formula: see text] and the equation-of-state of phantom field [Formula: see text] should satisfy the condition [Formula: see text] at the bounce point. If this constraint condition holds, the universe can enter an inflationary stage, and it is possible to unify the description of phantom field, dark matter and inflation. We introduced a toy model which has the same form of the general Chaplygin gas to unify the dark energy, dark matter and slow-roll inflation, and the slow-roll inflation of the toy model has also been discussed.


2005 ◽  
Vol 20 (11) ◽  
pp. 2347-2357 ◽  
Author(s):  
DAVID J. MULRYNE ◽  
N. J. NUNES ◽  
REZA TAVAKOL ◽  
JAMES E. LIDSEY

We study oscillatory universes within the context of Loop Quantum Cosmology. We make a comparative study of flat and positively curved universes sourced by scalar fields with either positive or negative potentials. We investigate how oscillating universes can set the initial conditions for successful slow-roll inflation, while ensuring that the semi-classical bounds are satisfied. We observe rich oscillatory dynamics with negative potentials, although it is difficult to respect the semi-classical bounds in models of this type.


Author(s):  
L. N. Granda ◽  
D. F. Jimenez

Abstract A study of the slow-roll inflation for an exponential potential in the frame of the scalar-tensor theory is performed, where non-minimal kinetic coupling to curvature and non-minimal coupling of the scalar field to the Gauss-Bonnet invariant are considered. Different models were considered with couplings given by exponential functions of the scalar field, that lead to graceful exit from inflation and give values of the scalar spectral index and the tensor-to-scalar ratio in the region bounded by the current observational data. Special cases were found, where the coupling functions are inverse of the potential, that lead to inflation with constant slow-roll parameters, and it was possible to reconstruct the model parameters for given ns and r. In first-order approximation the standard consistency relation maintains its validity in the model with non-minimal coupling, but it modifies in presence of Gauss–Bonnet coupling. The obtained Hubble parameter during inflation, $$H\sim 10^{-5} M_p$$H∼10-5Mp and the energy scale of inflation $$V^{1/4}\sim 10^{-3} M_p$$V1/4∼10-3Mp, are consistent with the upper bounds set by latest observations.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yohei Ema ◽  
Kyohei Mukaida ◽  
Jorinde van de Vis

Abstract We derive one- and two-loop renormalization group equations (RGEs) of Higgs-R2 inflation. This model has a non-minimal coupling between the Higgs and the Ricci scalar and a Ricci scalar squared term on top of the standard model. The RGEs derived in this paper are valid as long as the energy scale of interest (in the Einstein frame) is below the Planck scale. We also discuss implications to the inflationary predictions and the electroweak vacuum metastability.


2016 ◽  
Vol 31 (18) ◽  
pp. 1630027
Author(s):  
Ikuo S. Sogami

With multi-spinor fields which behave as triple-tensor products of the Dirac spinors, the Standard Model is extended so as to embrace three families of ordinary quarks and leptons in the visible sector and an additional family of exotic quarks and leptons in the dark sector of our Universe. Apart from the gauge and Higgs fields of the Standard Model symmetry G, new gauge and Higgs fields of a symmetry isomorphic to G are postulated to exist in the dark sector. It is the bi-quadratic interaction between visible and dark Higgs fields that opens a main portal to the dark sector. Breakdowns of the visible and dark electroweak symmetries result in the Higgs boson with mass 125 GeV and a new boson which can be related to the diphoton excess around 750 GeV. Subsequent to a common inflationary phase and a reheating period, the visible and dark sectors follow weakly-interacting paths of thermal histories. We propose scenarios for dark matter in which no dark nuclear reaction takes place. A candidate for the main component of the dark matter is a stable dark hadron with spin 3/2, and the upper limit of its mass is estimated to be 15.1 GeV/c2.


2011 ◽  
Vol 20 (13) ◽  
pp. 2543-2558 ◽  
Author(s):  
SAMUEL LEPE ◽  
JAVIER LORCA ◽  
FRANCISCO PEÑA ◽  
YERKO VÁSQUEZ

From a variational action with nonminimal coupling with a scalar field and classical scalar and fermionic interaction, cosmological field equations can be obtained. Imposing a Friedmann–Lemaître–Robertson–Walker (FLRW) metric, the equations lead directly to a cosmological model consisting of two interacting fluids, where the scalar field fluid is interpreted as dark energy and the fermionic field fluid is interpreted as dark matter. Several cases were studied analytically and numerically. An important feature of the non-minimal coupling is that it allows crossing the barrier from a quintessence to phantom behavior. The insensitivity of the solutions to one of the parameters of the model permits it to find an almost analytical solution for the cosmological constant type of universe.


2000 ◽  
Vol 269 (4) ◽  
pp. 209-213 ◽  
Author(s):  
Valerio Faraoni

2007 ◽  
Vol 22 (36) ◽  
pp. 2737-2748 ◽  
Author(s):  
HARVENDRA SINGH

In continuation of the papers hep-th/0505012 and hep-th/0508101 we investigate the consequences when N open-string tachyons roll down simultaneously. We demonstrate that the N-tachyon system coupled to gravity does indeed give rise to the assisted slow-roll inflation.


Sign in / Sign up

Export Citation Format

Share Document